Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol Methods ; 487: 112873, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32998052

RESUMO

This report covers the methodology for generation of stable heterohybridoma clones producing Foot-and-mouth disease virus (FMDV) reactive porcine monoclonal antibodies (mAbs). Swine received five inoculations of an inactivated O1 Manisa FMDV vaccine prior to the harvest of splenocytes. Due to the lack of a species-specific hybridoma fusion partner, the Sp2/0 murine myeloma cell line was utilized for the formation of porcine-murine heterohybridoma clones. Twenty-nine FMDV-reactive parental clones were generated. Following sub-cloning and monitoring of reactivity over 20 serial passages, eleven subclones derived from unique parental origins were characterized and are reported herein. This methodology demonstrated the production of porcine mAbs by fusion of porcine splenocytes from immunized pigs with murine myeloma cells to generate heterohybridomas. The porcine immune response may differ from the murine immune response in relation to recognized epitopes. Therefore, application of this methodology may provide valuable resources for swine immunology and enhance the understanding of the mechanisms for antibody based protection from diseases in swine.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vacinas Virais/farmacologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos , Linfócitos B/imunologia , Linhagem Celular , Clonagem Molecular , Febre Aftosa/imunologia , Febre Aftosa/virologia , Hibridomas , Imunização , Camundongos , Baço/imunologia , Sus scrofa , Vacinas Virais/imunologia
2.
Vaccine ; 38(4): 769-778, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31718901

RESUMO

To prepare foot-and-mouth disease (FMD) recombinant vaccines in response to newly emerging FMD virus (FMDV) field strains, we evaluated Modified Vaccinia virus Ankara-Bavarian Nordic (MVA-BN®) as an FMD vaccine vector platform. The MVA-BN vector has the capacity to carry and express numerous foreign genes and thereby has the potential to encode antigens from multiple FMDV strains. Moreover, this vector has an extensive safety record in humans. All MVA-BN-FMD constructs expressed the FMDV A24 Cruzeiro P1 capsid polyprotein as antigen and the FMDV 3C protease required for processing of the polyprotein. Because the FMDV wild-type 3C protease is detrimental to mammalian cells, one of four FMDV 3C protease variants were utilized: wild-type, or one of three previously reported mutants intended to dampen protease activity (C142T, C142L) or to increase specificity and thereby reduce adverse effects (L127P). These 3C coding sequences were expressed under the control of different promoters selected to reduce 3C protease expression. Four MVA-BN-FMD constructs were evaluated in vitro for acceptable vector stability, FMDV P1 polyprotein expression, processing, and the potential for vaccine scale-up production. Two MVA-BN FMD constructs met the in vitro selection criteria to qualify for clinical studies: MVA-mBN360B (carrying a C142T mutant 3C protease and an HIV frameshift for reduced expression) and MVA-mBN386B (carrying a L127P mutant 3C protease). Both vaccines were safe in cattle and elicited low to moderate serum neutralization titers to FMDV following multiple dose administrations. Following FMDV homologous challenge, both vaccines conferred 100% protection against clinical FMD and viremia using single dose or prime-boost immunization regimens. The MVA-BN FMD vaccine platform was capable of differentiating infected from vaccinated animals (DIVA). The demonstration of the successful application of MVA-BN as an FMD vaccine vector provides a platform for further FMD vaccine development against more epidemiologically relevant FMDV strains.


Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vacinação/métodos , Vacinas Virais/administração & dosagem , Animais , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/virologia , Linhagem Celular , Febre Aftosa/imunologia , Células HeLa , Humanos , Sorogrupo , Vacinação/veterinária , Vacinas de DNA , Vacinas Sintéticas , Vacinas Virais/imunologia , Viremia/prevenção & controle
3.
Vet Immunol Immunopathol ; 164(1-2): 74-8, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25669593

RESUMO

Foot-and-mouth disease virus (FMDV) is one of the most contagious animal viruses. This virus is very sensitive to inhibition by type I interferons. Currently, a bioassay based on plaque reduction is used to measure anti-FMDV activity of porcine IFNs. The plaque reduction assay is tedious and difficult to utilize for high-throughput analysis. Using available FMDV susceptible bovine and porcine cells, we developed and tested a colorimetric assay based on cytopathic effect reduction for its ability to quantify FMDV-specific antiviral activity of bovine and porcine type I interferons. Our results show that this new method has significant advantages over other assays in terms of labor intensity, cost, high-throughput capability and/or anti-FMDV specific activity because of simpler procedures and direct measurement of antiviral activity. Several assay conditions were tested to optimize the procedures. The test results show that the assay can be standardized with fixed conditions and a standard or a reference for measuring antiviral activity as units. This is an excellent assay in terms of sensitivity and accuracy based on a statistical evaluation. The results obtained with this assay were highly correlated with a conventional virus titration method.


Assuntos
Bioensaio/veterinária , Colorimetria/veterinária , Vírus da Febre Aftosa/imunologia , Vírus da Febre Aftosa/patogenicidade , Animais , Bioensaio/economia , Bioensaio/métodos , Bovinos , Linhagem Celular , Colorimetria/economia , Colorimetria/métodos , Análise Custo-Benefício , Efeito Citopatogênico Viral/imunologia , Ensaios de Triagem em Larga Escala/economia , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/veterinária , Imunidade Inata , Interferon Tipo I/farmacologia , Proteínas Recombinantes/farmacologia , Sus scrofa
4.
PLoS One ; 8(5): e64119, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23724025

RESUMO

Foot-and-mouth disease virus (FMDV) targets specific tissues for primary infection, secondary high-titer replication (e.g. foot and mouth where it causes typical vesicular lesions) and long-term persistence at some primary replication sites. Although integrin αVß6 receptor has been identified as primary FMDV receptors in animals, their tissue distribution alone fails to explain these highly selective tropism-driven events. Thus, other molecular mechanisms must play roles in determining this tissue specificity. We hypothesized that differences in certain biological activities due to differential gene expression determine FMDV tropism and applied whole genome gene expression profiling to identify genes differentially expressed between FMDV-targeted and non-targeted tissues in terms of supporting primary infection, secondary replication including vesicular lesions, and persistence. Using statistical and bioinformatic tools to analyze the differential gene expression, we identified mechanisms that could explain FMDV tissue tropism based on its association with differential expression of integrin αVß6 heterodimeric receptor (FMDV receptor), fibronectin (ligand of the receptor), IL-1 cytokines, death receptors and the ligands, and multiple genes in the biological pathways involved in extracellular matrix turnover and interferon signaling found in this study. Our results together with reported findings indicate that differences in (1) FMDV receptor availability and accessibility, (2) type I interferon-inducible immune response, and (3) ability to clear virus infected cells via death receptor signaling play roles in determining FMDV tissue tropism and the additional increase of high extracellular matrix turnover induced by FMDV infection, likely via triggering the signaling of highly expressed IL-1 cytokines, play a key role in the pathogenesis of vesicular lesions.


Assuntos
Vírus da Febre Aftosa/fisiologia , Febre Aftosa/genética , Perfilação da Expressão Gênica , Especificidade de Órgãos/genética , Tropismo Viral/fisiologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Sítios de Ligação , Bovinos , Biologia Computacional , Matriz Extracelular/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Febre Aftosa/virologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , Integrinas/genética , Integrinas/metabolismo , Interferons/metabolismo , Interleucina-1/genética , Interleucina-1/metabolismo , Ligantes , Masculino , Família Multigênica/genética , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Morte Celular/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
5.
BMC Plant Biol ; 8: 46, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18433496

RESUMO

BACKGROUND: Tropospheric ozone, the most abundant air pollutant is detrimental to plant and animal health including humans. In sensitive plant species even a few hours of exposure to this potent oxidant (200-300 nL. L-1) leads to severe oxidative stress that manifests as visible cell death. In resistant plants usually no visible symptoms are observed on exposure to similar ozone concentrations. Naturally occurring variability to acute ozone in plants provides a valuable resource for examining molecular basis of the differences in responses to ozone. From our earlier study in Medicago truncatula, we have identified cultivar Jemalong is ozone sensitive and PI 464815 (JE154) is an ozone-resistant accession. Analyses of transcriptome changes in ozone-sensitive and resistant accession will provide important clues for understanding the molecular changes governing the plant responses to ozone. RESULTS: Acute ozone treatment (300 nL L-1 for six hours) led to a reactive oxygen species (ROS) burst in sensitive Jemalong six hours post-fumigation. In resistant JE154 increase in ROS levels was much reduced compared to Jemalong. Based on the results of ROS profiling, time points for microarray analysis were one hour into the ozone treatment, end of treatment and onset of an ozone-induced ROS burst at 12 hours. Replicated temporal transcriptome analysis in these two accessions using 17 K oligonucleotide arrays revealed more than 2000 genes were differentially expressed. Significantly enriched gene ontologies (GOs) were identified using the Cluster Enrichment analysis program. A striking finding was the alacrity of JE154 in altering its gene expression patterns in response to ozone, in stark contrast to delayed transcriptional response of Jemalong. GOs involved in signaling, hormonal pathways, antioxidants and secondary metabolism were altered in both accessions. However, the repertoire of genes responding in each of these categories was different between the two accessions. Real-time PCR analysis confirmed the differential expression patterns of a subset of these genes. CONCLUSION: This study provided a cogent view of the unique and shared transcriptional responses in an ozone-resistant and sensitive accession that exemplifies the complexity of oxidative signaling in plants. Based on this study, and supporting literature in Arabidopsis we speculate that plants sensitive to acute ozone are impaired in perception of the initial signals generated by the action of this oxidant. This in turn leads to a delayed transcriptional response in the ozone sensitive plants. In resistant plants rapid and sustained activation of several signaling pathways enables the deployment of multiple mechanisms for minimizing the toxicity effect of this reactive molecule.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/genética , Ozônio/farmacologia , Análise por Conglomerados , Ciclopentanos/farmacologia , Flavonoides/metabolismo , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Oxilipinas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido Salicílico/farmacologia
6.
Plant Physiol Biochem ; 45(1): 70-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17270456

RESUMO

Oxidative signaling mediated by reactive oxygen species (ROS) is a central component of biotic and abiotic stresses in plants. Acute ozone (O(3)) fumigation is a useful non-invasive treatment for eliciting endogenous ROS in planta. In this study, 38 different accessions of the model legume, Medicago truncatula, from various geographical regions were fumigated with 300 nmol mol(-1) of O(3) for a period of six hours. Phenotypic symptoms were evaluated 24 and 48 h after the end of treatment. A majority of the accessions showed distinct visible damage. Eight accessions showing varying sensitivities to ozone were subjected to biochemical analysis to evaluate correlations between ozone damage and levels of ROS, antioxidants, and lipid peroxidation. Two-way analysis of variance indicated highly significant interactions between O(3) damage and levels of ROS, ascorbate, glutathione and lipid peroxidation. There were significant differences among the accessions for these traits before and after the end of O(3) fumigation, as indicated by equal variance Student's t-test. This study suggests that multiple physiological and biochemical mechanisms may govern O(3) tolerance or sensitivity. Surveying a large collection of germplasm led to identification of multiple resistant and sensitive lines for investigating molecular basis of O(3) phytotoxicity. The most resistant JE154 accession also showed enhanced tolerance to chronic O(3) and dehydration stress, suggesting germplasm with increased tolerance to acute O(3) can be a useful resource for improving resistance to multiple abiotic stressors.


Assuntos
Medicago truncatula/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Ozônio/farmacologia , Ácido Ascórbico/metabolismo , Ácido Desidroascórbico/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Medicago truncatula/classificação , Medicago truncatula/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fenótipo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...