Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 29(37)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28804969

RESUMO

A superconducting hard gap in hybrid superconductor-semiconductor devices has been found to be necessary to access topological superconductivity that hosts Majorana modes (non-Abelian excitation). This requires the formation of homogeneous and barrier-free interfaces between the superconductor and semiconductor. Here, a new platform is reported for topological superconductivity based on hybrid Nb-In0.75 Ga0.25 As-quantum-well-Nb that results in hard superconducting gap detection in symmetric, planar, and ballistic Josephson junctions. It is shown that with careful etching, sputtered Nb films can make high-quality and transparent contacts to the In0.75 Ga0.25 As quantum well, and the differential resistance and critical current measurements of these devices are discussed as a function of temperature and magnetic field. It is demonstrated that proximity-induced superconductivity in the In0.75 Ga0.25 As-quantum-well 2D electron gas results in the detection of a hard gap in four out of seven junctions on a chip with critical current values of up to 0.2 µA and transmission probabilities of >0.96. The results, together with the large g-factor and Rashba spin-orbit coupling in In0.75 Ga0.25 As quantum wells, which indeed can be tuned by the indium composition, suggest that the Nb-In0.75 Ga0.25 As-Nb system can be an excellent candidate to achieve topological phase and to realize hybrid topological superconducting devices.

2.
Nanoscale Res Lett ; 7(1): 459, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22898058

RESUMO

We report the experimental evidence for the formation of multi-quantum dots in a hydrogenated single-layer graphene flake. The existence of multi-quantum dots is supported by the low-temperature measurements on a field effect transistor structure device. The resulting Coulomb blockade diamonds shown in the color scale plot together with the number of Coulomb peaks exhibit the characteristics of the so-called 'stochastic Coulomb blockade'. A possible explanation for the formation of the multi-quantum dots, which is not observed in pristine graphene to date, was attributed to the impurities and defects unintentionally decorated on a single-layer graphene flake which was not treated with the thermal annealing process. Graphene multi-quantum dots developed around impurities and defect sites during the hydrogen plasma exposure process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...