Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 42(14): 3365-3373, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38627145

RESUMO

The head domain of the hemagglutinin of influenza viruses plays a dominant role in the antibody response due to the presence of immunodominant antigenic sites that are the main targets of host neutralizing antibodies. For the H1 hemagglutinin, five major antigenic sites defined as Sa, Sb, Ca1, Ca2, and Cb have been described. Although previous studies have focused on defining the hierarchy of the antigenic sites of the hemagglutinin in different human cohorts, it is still unclear if the immunodominance profile of the antigenic sites might change with the antibody levels of individuals or if other demographic factors (such as exposure history, sex, or age) could also influence the importance of the antigenic sites. The major antigenic sites of influenza viruses hemagglutinins are responsible for eliciting most of the hemagglutination inhibition antibodies in the host. To determine the antibody prevalence towards each major antigenic site, we evaluated the hemagglutination inhibition against a panel of mutant H1 viruses, each one lacking one of the "classic" antigenic sites. Our results showed that the individuals from the Stop Flu NYU cohort had an immunodominant response towards the sites Sb and Ca2 of H1 hemagglutinin. A simple logistic regression analysis of the immunodominance profiles and the hemagglutination inhibition titers displayed by each donor revealed that individuals with high hemagglutination inhibition titers against the wild-type influenza virus exhibited higher probabilities of displaying an immunodominance profile dominated by Sb, followed by Ca2 (Sb > Ca2 profile), while individuals with low hemagglutination inhibition titers presented a higher chance of displaying an immunodominance profile in which Sb and Ca2 presented the same level of immunodominance (Sb = Ca2 profile). Finally, while age exhibited an influence on the immunodominance of the antigenic sites, biological sex was not related to displaying a specific immunodominance profile.


Assuntos
Anticorpos Antivirais , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Epitopos Imunodominantes , Influenza Humana , Humanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Feminino , Masculino , Adulto , Epitopos Imunodominantes/imunologia , Pessoa de Meia-Idade , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Adulto Jovem , Fatores Etários , Fatores Sexuais , Adolescente , Estudos de Coortes , Idoso , Antígenos Virais/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue
2.
J Virol ; 97(11): e0164622, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37916834

RESUMO

IMPORTANCE: Currently, many groups are focusing on isolating both neutralizing and non-neutralizing antibodies to the mutation-prone hemagglutinin as a tool to treat or prevent influenza virus infection. Less is known about the level of protection induced by non-neutralizing antibodies that target conserved internal influenza virus proteins. Such non-neutralizing antibodies could provide an alternative pathway to induce broad cross-reactive protection against multiple influenza virus serotypes and subtypes by partially overcoming influenza virus escape mediated by antigenic drift and shift. Accordingly, more information about the level of protection and potential mechanism(s) of action of non-neutralizing antibodies targeting internal influenza virus proteins could be useful for the design of broadly protective and universal influenza virus vaccines.


Assuntos
Anticorpos Monoclonais , Vírus da Influenza A , Proteínas do Nucleocapsídeo , Proteínas da Matriz Viral , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Influenza Humana , Proteínas da Matriz Viral/imunologia , Proteínas do Nucleocapsídeo/imunologia
3.
Sci Adv ; 9(37): eadi4753, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703367

RESUMO

Seasonal influenza virus vaccines are effective when they are well matched to circulating strains. Because of antigenic drift/change in the immunodominant hemagglutinin (HA) head domain, annual vaccine reformulations are necessary to maintain a match with circulating strains. In addition, seasonal vaccines provide little to no protection against newly emerging pandemic strains. Sequential vaccination with chimeric HA (cHA) constructs has been proven to direct the immune response toward the immunosubdominant but more conserved HA stalk domain. In this study, we show that immunization with group 2 cHA split vaccines in combination with the CpG 1018 adjuvant elicits broadly cross-reactive antibodies against all group 2 HAs, as well as systemic and local antigen-specific T cell responses. Antibodies elicited after sequential vaccination are directed to conserved regions of the HA such as the stalk and the trimer interface and also to the N2 neuraminidase (NA). Immunized mice were fully protected from challenge with a broad panel of influenza A viruses.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Animais , Camundongos , Hemaglutininas , Anticorpos , Vacinação , Epitopos Imunodominantes
4.
Front Bioeng Biotechnol ; 11: 1097349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342504

RESUMO

Seasonal influenza viruses account for 1 billion infections worldwide every year, including 3-5 million cases of severe illness and up to 650,000 deaths. The effectiveness of current influenza virus vaccines is variable and relies on the immunodominant hemagglutinin (HA) and to a lesser extent on the neuraminidase (NA), the viral surface glycoproteins. Efficient vaccines that refocus the immune response to conserved epitopes on the HA are needed to tackle infections by influenza virus variants. Sequential vaccination with chimeric HA (cHA) and mosaic HA (mHA) constructs has proven to induce immune responses to the HA stalk domain and conserved epitopes on the HA head. In this study, we developed a bioprocess to manufacture cHA and mHA inactivated split vaccines and a method to quantify HA with a prefusion stalk based on a sandwich enzyme-linked immunosorbent assay. Virus inactivation with beta-propiolactone (ßPL) and splitting with Triton X-100 yielded the highest amount of prefusion HA and enzymatically active NA. In addition, the quantity of residual Triton X-100 and ovalbumin (OVA) was reduced to very low levels in the final vaccine preparations. The bioprocess shown here provides the basis to manufacture inactivated split cHA and mHA vaccines for pre-clinical research and future clinical trials in humans, and can also be applied to produce vaccines based on other influenza viruses.

5.
Proc Natl Acad Sci U S A ; 119(45): e2206333119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322769

RESUMO

Combined vaccine formulations targeting not only hemagglutinin but also other influenza virus antigens could form the basis for a universal influenza virus vaccine that has the potential to elicit long-lasting, broadly cross-reactive immune responses. Lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) vaccines can be utilized to efficiently target multiple antigens with a single vaccine. Here, we assessed the immunogenicity and protective efficacy of nucleoside-modified mRNA-LNP vaccines that contain four influenza A group 2 virus antigens (hemagglutinin stalk, neuraminidase, matrix protein 2, and nucleoprotein) in mice. We found that all vaccine components induced antigen-specific cellular and humoral immune responses after administration of a single dose. While the monovalent formulations were not exclusively protective, the combined quadrivalent formulation protected mice from all challenge viruses, including a relevant H1N1 influenza virus group 1 strain, with minimal weight loss. Importantly, the combined vaccine protected from morbidity at a dose of 125 ng per antigen after a single vaccination in mice. With these findings, we confidently conclude that the nucleoside-modified mRNA-LNP platform can be used to elicit protection against a large panel of influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Camundongos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Nucleosídeos , Hemaglutininas , Vacinas Combinadas , RNA Mensageiro/genética , Anticorpos Antivirais , Vacinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vacinas de mRNA
6.
Proc Natl Acad Sci U S A ; 119(21): e2200821119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35594401

RESUMO

Influenza virus hemagglutinin (HA) has been the primary target for influenza vaccine development. Broadly protective antibodies targeting conserved regions of the HA unlock the possibility of generating universal influenza immunity. Two group 2 influenza A chimeric HAs, cH4/3 and cH15/3, were previously designed to elicit antibodies to the conserved HA stem. Here, we show by X-ray crystallography and negative-stain electron microscopy that a broadly protective antistem antibody can stably bind to cH4/3 and cH15/3 HAs, thereby validating their potential as universal vaccine immunogens. Furthermore, flexibility was observed in the head domain of the chimeric HA structures, suggesting that antibodies could also potentially interact with the head interface epitope. Our structural and binding studies demonstrated that a broadly protective antihead trimeric interface antibody could indeed target the more open head domain of the cH15/3 HA trimer. Thus, in addition to inducing broadly protective antibodies against the conserved HA stem, chimeric HAs may also be able to elicit antibodies against the conserved trimer interface in the HA head domain, thereby increasing the vaccine efficacy.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Humanos , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle
7.
Viruses ; 14(3)2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35337043

RESUMO

Gag virus-like particles (VLPs) are promising vaccine candidates against infectious diseases. VLPs are generally produced using the insect cell/baculovirus expression vector system (BEVS), or in mammalian cells by plasmid DNA transient gene expression (TGE). However, VLPs produced with the insect cell/BEVS are difficult to purify and might not display the appropriate post-translational modifications, whereas plasmid DNA TGE approaches are expensive and have a limited scale-up capability. In this study, the production of Gag VLPs with the BacMam expression system in a suspension culture of HEK293 cells is addressed. The optimal conditions of multiplicity of infection (MOI), viable cell density (VCD) at infection, and butyric acid (BA) concentration that maximize cell transduction and VLP production are determined. In these conditions, a maximum cell transduction efficiency of 91.5 ± 1.1%, and a VLP titer of 2.8 ± 0.1 × 109 VLPs/mL are achieved. Successful VLP generation in transduced HEK293 cells is validated using super-resolution fluorescence microscopy, with VLPs produced resembling immature HIV-1 virions and with an average size comprised in the 100-200 nm range. Additionally, evidence that BacMam transduction occurs via different pathways including dynamin-mediated endocytosis and macropinocytosis is provided. This work puts the basis for future studies aiming at scaling up the BacMam baculovirus system as an alternative strategy for VLP production.


Assuntos
HIV-1 , Vírus não Classificados , Animais , Baculoviridae/genética , DNA , Células HEK293 , HIV-1/genética , Humanos , Mamíferos , Vírion/genética , Vírus não Classificados/genética
8.
N Biotechnol ; 68: 87-96, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35151904

RESUMO

DNA delivery with polyethylenimine (PEI) has been widely used in the last three decades for the transfection of mammalian cells. Advances in novel characterization techniques at the nanometric scale offer new opportunities to revisit the physicochemical properties of DNA/PEI polyplexes that lead to efficient transfection. In this work, these properties are tuned by studying the synergies between simple parameters such as NaCl concentration, pH and incubation time in the DNA/PEI polyplex preparation protocol by means of Design of Experiments (DoE). By doing so, a model is obtained where an optimal NaCl concentration of 125 mM and an incubation time of 11 min provided the highest transfection yields. Correlation analyses between the physicochemical properties of DNA/PEI polyplexes and the predicted model responses revealed the existence of an optimal degree of aggregation in the pre-complexing solution to attain the highest transfection efficiencies. The presence of these micrometric DNA/PEI polyplex aggregates was confirmed by several nanoparticle characterization techniques including cryo-TEM, DLS and flow virometry. The findings provide a better understanding of the role of DNA/PEI aggregates in transient gene expression approaches, in particular considering that similar complexation protocols and saline solutions are widely used for the transfection of mammalian cell cultures.


Assuntos
DNA , Polietilenoimina , Animais , DNA/genética , Expressão Gênica , Técnicas de Transferência de Genes , Células HEK293 , Humanos , Polietilenoimina/química , Transfecção
9.
Biotechnol J ; 16(4): e2000391, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33247883

RESUMO

Stable cell pools are receiving a renewed interest as a potential alternative system to clonal cell lines. The shorter development timelines and the capacity to achieve high product yields make them an interesting approach for recombinant protein production. In this study, stable High Five cell pools are assessed for the production of a simple protein, mCherry, and the more complex HIV-1 Gag-eGFP virus-like particles (VLPs). Random integration coupled to fluorescence-activated cell sorting (FACS) in suspension conditions is applied to accelerate the stable cell pool generation process and enrich it with high producer cells. This methodology is successfully transferred to a bioreactor for VLP production, resulting in a 2-fold increase in VLP yields with respect to shake flask cultures. In these conditions, maximum viable cell concentration improves by 1.5-fold, and by-product formation is significantly reduced. Remarkably, a global increase in the uptake of amino acids in the Gag-eGFP stable cell pool is observed when compared with parental High Five cells, reflecting the additional metabolic burden associated with VLP production. These results suggest that stable High Five cell pools are a robust and powerful approach to produce VLPs and other recombinant proteins, and put the basis for future studies aiming to scale up this system.


Assuntos
HIV-1 , Animais , Linhagem Celular , HIV-1/genética , Insetos , Proteínas Recombinantes/genética , Suspensões
10.
Nanomaterials (Basel) ; 10(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806511

RESUMO

High Five cells are an excellent host for the production of virus-like particles (VLPs) with the baculovirus expression vector system (BEVS). However, the concurrent production of high titers of baculovirus hinder the purification of these nanoparticles due to similarities in their physicochemical properties. In this study, first a transient gene expression (TGE) method based on the transfection reagent polyethylenimine (PEI) is optimized for the production of HIV-1 VLPs at shake flask level. Furthermore, VLP production by TGE in High Five cells is successfully demonstrated at bioreactor scale, resulting in a higher maximum viable cell concentration (5.1 × 106 cell/mL), the same transfection efficiency and a 1.8-fold increase in Gag-eGFP VLP production compared to shake flasks. Metabolism analysis of High Five cells indicates a reduction in the consumption of the main metabolites with respect to non-transfected cell cultures, and an increase in the uptake rate of several amino acids when asparagine is depleted. Quality assessment by nanoparticle tracking analysis and flow virometry of the VLPs produced shows an average size of 100-200 nm, in agreement with immature HIV-1 viruses reported in the literature. Overall, this work demonstrates that the High Five/TGE system is a suitable approach for the production of VLP-based vaccine candidates and other recombinant proteins.

11.
J Biotechnol ; 322: 43-53, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32673687

RESUMO

Insect cells have shown a high versatility to produce multiple recombinant products. The ease of culture, low contamination risk with human pathogens and high expression capacity makes an attractive platform to generate virus-like particles (VLPs). The baculovirus expression vector system (BEVS) has been frequently used to produce these complex nanoparticles. However, the BEVS entails several difficulties in the downstream phase as well as undesirable side-effects due to the expression of baculovirus-derived proteins. In this work, we developed a baculovirus-free system based on polyethylenimine (PEI)-mediated transient gene expression (TGE) of Sf9 cells. An exhaustive study of DNA:PEI polyplex formation was performed and the optimal TGE conditions were determined by the combination of Design of Experiments (DoE) and desirability functions. The TGE approach was successfully applied to produce three model recombinant products with different structural complexities, including eGFP, hSEAP and HIV-1 Gag VLPs. Cell membrane co-localization with the Gag polyprotein was detected by fluorescence microscopy, whereas nanoparticle tracking analysis and flow virometry were applied as high-throughput techniques to monitor the VLP production process. Analysis of VLP production revealed that 48 h after transfection were optimal for VLP harvesting since the ratio of VLPs to extracellular vesicles was the highest. In these conditions, a maximum of 1.9 ±â€¯0.8·109 VLP/mL was achieved, representing a 2.8-fold increase compared to the initial transfection condition. In conclusion, the TGE approach proposed in this study provides a baculovirus-free platform to rapidly produce VLPs and potentially other recombinant products in insect cells.


Assuntos
Proteínas Recombinantes , Células Sf9/metabolismo , Transfecção/métodos , Animais , Microscopia Crioeletrônica , DNA/química , DNA/genética , Polietilenoimina/química , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacinas de Partículas Semelhantes a Vírus , Vírion
12.
Cytometry A ; 97(9): 921-932, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515126

RESUMO

Advancements in the field of characterization techniques have broadened the opportunities to deepen into nanoparticle production bioprocesses. Gag-based virus-like particles (VLPs) have shown their potential as candidates for recombinant vaccine development. However, comprehensive characterization of the production process is still a requirement to meet the desired critical quality attributes. In this work, the production process of Gag VLPs by baculovirus (BV) infection in the reference High Five and Sf9 insect cell lines is characterized in detail. To this end, the Gag polyprotein was fused in frame to the enhanced green fluorescent protein (eGFP) to favor process evaluation with multiple analytical tools. Tracking of the infection process using confocal microscopy and flow cytometry revealed a pronounced increase in the complexity of High Five over Sf9 cells. Cryogenic transmission electron microscopy (cryo-TEM) characterization determined that changes in cell complexity could be attributed to the presence of occlusion-derived BV in High Five cells, whereas Sf9 cells evidenced a larger proportion of the budded virus phenotype (23-fold). Initial evaluation of the VLP production process using spectrofluorometry showed that higher levels of the Gag-eGFP polyprotein were obtained in High Five cells (3.6-fold). However, comparative analysis based on nanoparticle quantification by flow virometry and nanoparticle tracking analysis (NTA) proved that Sf9 cells were 1.7- and 1.5-fold more productive in terms of assembled VLPs, respectively. Finally, analytical ultracentrifugation coupled to flow virometry evidenced a larger sedimentation coefficient of High Five-derived VLPs, indicating a possible interaction with other cellular compounds. Taken together, these results highlight the combined use of microscopy and flow cytometry techniques to improve vaccine development processes using the insect cell/BV expression vector system. © 2020 International Society for Advancement of Cytometry.


Assuntos
Nanopartículas , Vírion , Animais , Citometria de Fluxo , Insetos , Microscopia Eletrônica de Transmissão
13.
Biotechnol Bioeng ; 117(7): 1929-1945, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32242921

RESUMO

Virus-like particles (VLPs) offer great promise in the field of nanomedicine. Enveloped VLPs are a class of these nanoparticles and their production process occurs by a budding process, which is known to be the most critical step at intracellular level. In this study, we developed a novel imaging method based on super-resolution fluorescence microscopy (SRFM) to assess the generation of VLPs in living cells. This methodology was applied to study the production of Gag VLPs in three animal cell platforms of reference: HEK 293-transient gene expression (TGE), High Five-baculovirus expression vector system (BEVS) and Sf9-BEVS. Quantification of the number of VLP assembly sites per cell ranged from 500 to 3,000 in the different systems evaluated. Although the BEVS was superior in terms of Gag polyprotein expression, the HEK 293-TGE platform was more efficient regarding the assembly of Gag as VLPs. This was translated into higher levels of non-assembled Gag monomer in BEVS harvested supernatants. Furthermore, the presence of contaminating nanoparticles was evidenced in all three systems, specifically in High Five cells. The SRFM-based method here developed was also successfully applied to measure the concentration of VLPs in crude supernatants. The lipid membrane of VLPs and the presence of nucleic acids alongside these nanoparticles could also be detected using common staining procedures. Overall, a complete picture of the VLP production process was achieved in these three production platforms. The robustness and sensitivity of this new approach broaden the applicability of SRFM toward the development of new detection, diagnosis and quantification methods based on confocal microscopy in living systems.


Assuntos
Infecções por HIV/virologia , HIV-1/genética , Vírion/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Animais , Linhagem Celular , Expressão Gênica , Células HEK293 , Humanos , Nanopartículas/metabolismo , Transfecção
14.
Viruses ; 12(2)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079288

RESUMO

Virus-like particles (VLPs) have emerged as a powerful scaffold for antigen presentation and delivery strategies. Compared to single protein-based therapeutics, quality assessment requires a higher degree of refinement due to the structure of VLPs and their similar properties to extracellular vesicles (EVs). Advances in the field of nanotechnology with single particle and high-resolution analysis techniques provide appealing approaches to VLP characterization. In this study, six different biophysical methods have been assessed for the characterization of HIV-1-based VLPs produced in mammalian and insect cell platforms. Sample preparation and equipment set-up were optimized for the six strategies evaluated. Electron Microscopy (EM) disclosed the presence of several types of EVs within VLP preparations and cryogenic transmission electron microscopy (cryo-TEM) resulted in the best technique to resolve the VLP ultrastructure. The use of super-resolution fluorescence microscopy (SRFM), nanoparticle tracking analysis (NTA) and flow virometry enabled the high throughput quantification of VLPs. Interestingly, differences in the determination of nanoparticle concentration were observed between techniques. Moreover, NTA and flow virometry allowed the quantification of both EVs and VLPs within the same experiment while analyzing particle size distribution (PSD), simultaneously. These results provide new insights into the use of different analytical tools to monitor the production of nanoparticle-based biologicals and their associated contaminants.


Assuntos
HIV/ultraestrutura , Microscopia/métodos , Animais , Microscopia Crioeletrônica , Vesículas Extracelulares/ultraestrutura , Vesículas Extracelulares/virologia , Células HEK293 , Humanos , Microscopia Eletrônica de Transmissão , Pesquisa Qualitativa , Células Sf9 , Imagem Individual de Molécula/métodos , Spodoptera , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura , Vírion/ultraestrutura
15.
Appl Microbiol Biotechnol ; 104(4): 1569-1582, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31907573

RESUMO

The nature of enveloped virus-like particles (VLPs) has triggered high interest in their application to different research fields, including vaccine development. The baculovirus expression vector system (BEVS) has been used as an efficient platform for obtaining large amounts of these complex nanoparticles. To date, most of the studies dealing with VLP production by recombinant baculovirus infection utilize indirect detection or quantification techniques that hinder the appropriate characterization of the process and product. Here, we propose the application of cutting-edge quantification methodologies in combination with advanced statistical designs to exploit the full potential of the High Five/BEVS as a platform to produce HIV-1 Gag VLPs. The synergies between CCI, MOI, and TOH were studied using a response surface methodology approach on four different response functions: baculovirus infection, VLP production, VLP assembly, and VLP productivity. TOH and MOI proved to be the major influencing factors in contrast with previous reported data. Interestingly, a remarkable competition between Gag VLP production and non-assembled Gag was detected. Also, the use of nanoparticle tracking analysis and flow virometry revealed the existence of remarkable quantities of extracellular vesicles. The different responses of the study were combined to determine two global optimum conditions, one aiming to maximize the VLP titer (quantity) and the second aiming to find a compromise between VLP yield and the ratio of assembled VLPs (quality). This study provides a valuable approach to optimize VLP production and demonstrates that the High Five/BEVS can support mass production of Gag VLPs and potentially other complex nanoparticles.


Assuntos
HIV-1/imunologia , Nanopartículas/análise , Vacinas de Partículas Semelhantes a Vírus/análise , Produtos do Gene gag do Vírus da Imunodeficiência Humana/biossíntese , Animais , Baculoviridae , Linhagem Celular , Interpretação Estatística de Dados , Vesículas Extracelulares , Células HEK293 , Humanos , Insetos/citologia , Insetos/virologia , Microscopia Eletrônica , Nanopartículas/química , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura , Vírion
16.
Vaccine ; 38(7): 1849-1859, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31911032

RESUMO

Nanoparticles generated by recombinant technologies are receiving increased interest in several applications, particularly the use of virus like particles (VLPs) for the generation of safer vaccines. The characterization and quantification of these nanoparticles with complex structures is very relevant for a better comprehension of the production systems and should circumvent the limitations of the most conventional quantification techniques often used. Here, we applied confocal microscopy, flow virometry and nanoparticle tracking analysis (NTA) to assess the production process of Gag virus-like particles (VLPs) in the Sf9 cell/baculovirus expression vector system (BEVS). These novel techniques were implemented in an optimization workflow based on Design of Experiments (DoE) and desirability functions to determine the best production conditions. A higher level of sensitivity was observed for NTA and confocal microscopy but flow virometry proved to be more accurate. Interestingly, extracellular vesicles were detected as an important source of contamination of this system. The synergistic interplay of viable cell concentration at infection (CCI), multiplicity of infection (MOI) and time of harvest (TOH) was assessed on five objective responses: VLP assembly, baculovirus infection, VLP production, cell viability and VLP productivity. Two global optimal conditions were defined, one targeting the maximal yield of VLPs and the other providing a balance between production and assembled VLPs. In both cases, a low MOI proved to be the best condition to achieve the highest VLP production and productivity yields. Cryo-EM analysis of nanoparticles produced in these conditions showed the typical size and morphology of HIV-1 VLPs. This study presents an integrative approach based on the combination of DoE and direct nanoparticle quantification techniques to comprehensively optimize the production of VLPs and other viral-based biotherapeutics.


Assuntos
HIV-1 , Nanopartículas , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Animais , Baculoviridae/genética , HIV-1/imunologia , Células Sf9
17.
Eng Life Sci ; 19(4): 315-327, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32625011

RESUMO

The Chinese hamster ovary (CHO) cell line is widely used for the production of recombinant proteins due to its high growing capacity and productivity, as well as other cell lines derived later than CHO. Adapting cell culture media for each specific cell line is a key to exploit these features for cost effective and fast product generation. Media supplementation is generally addressed by means of one-factor-at-a-time or classical design of experiments approaches but these techniques may not be efficient enough in preliminary screening phases. In this study, a novel strategy consisting in folding over the Plackett-Burman design was used to increase cell growth and trastuzumab production of different CHO cell lines through supplementation with nonanimal recombinant compounds. Synergies between compounds could be detected with a reduced number of experiments by using this methodology in comparison to more conventional fractional factorial designs. In the particular case reported here, the sequential use of this modified Plackett-Burman in combination with a Box-Behnken design led to a 1.5-fold increase in cell growth (10 × 106 cells/mL) and a two-fold in trastuzumab titer (122 mg/L) in suspension batch culture.

18.
Appl Microbiol Biotechnol ; 102(24): 10495-10510, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30317441

RESUMO

Polyethylenimine (PEI)-based transient gene expression (TGE) is nowadays a well-established methodology for rapid protein production in mammalian cells, but it has been used to a much lower extent in insect cell lines. A fast and robust TGE methodology for suspension Hi5 (Trichoplusia ni) cells is presented. Significant differences in size and morphology of DNA:PEI polyplexes were observed in the different incubation solutions tested. Moreover, minimal complexing time (< 1 min) between DNA and PEI in 150 mM NaCl solution provided the highest transfection efficiency. Nanoscopic characterization by means of cryo-EM revealed that DNA:PEI polyplexes up to 300-400 nm were the most efficient for transfection. TGE optimization was performed using eGFP as model protein by means of the combination of advanced statistical designs. A global optimal condition of 1.5 × 106 cell/mL, 2.1 µg/mL of DNA, and 9.3 µg/mL PEI was achieved through weighted-based optimization of transfection, production, and viability responses. Under these conditions, a 60% transfection and 0.8 µg/106 transfected cell·day specific productivity were achieved. The TGE protocol developed for Hi5 cells provides a promising baculovirus-free and worthwhile approach to produce a wide variety of recombinant proteins in a short period of time.


Assuntos
Regulação da Expressão Gênica , Lepidópteros/citologia , Transfecção/métodos , Animais , Linhagem Celular , Microscopia Crioeletrônica , Difusão Dinâmica da Luz , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Polietilenoimina/química , Proteínas Recombinantes/genética , Reprodutibilidade dos Testes
19.
J Transl Med ; 16(1): 291, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355298

RESUMO

BACKGROUND: Successful delivery of cell-based therapeutics into patients is compromised by their short shelf-life upon release from production facilities due to the living nature of the active component that rapidly loses viability, and therefore its properties. In this context, the use of appropriate additives may contribute to the stabilisation of the cellular component within specifications for a longer time until administration. RESULTS: In the present study, we evaluated the effect of different formulations on the stability of viability, identity, and potency of clinical grade multipotent mesenchymal stromal cells in suspension, both electrolyte solution and protein content were found to impact on their shelf-life. Particularly cryopreservation of cells in a Plasmalyte 148 supplemented with 2% (w/v) AlbIX (a yeast-derived recombinant albumin) and 10% (v/v) dimethyl sulfoxide, and final formulation post-thawing in Plasmalyte 148 supplemented with 2% (w/v) AlbIX enabling prolonged stability from 24 h up to 72 h in optimal conditions. Further investigation on the mechanisms of action involved revealed a delay of apoptosis progression into late stage when AlbIX was present. CONCLUSIONS: The use of optimal formulations for each cell type of interest is crucial to extend the shelf life of cell-based pharmaceuticals and contribute to solve logistical challenges. We demonstrated that the use of Plasmalyte 148 supplemented with 2% (w/v) AlbIX resulted in superior stability of multipotent mesenchymal stromal cells without affecting their identity and multipotency.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Apoptose/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Criopreservação , Crioprotetores/farmacologia , Eletrólitos , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo , Fenótipo , Albumina Sérica Humana/metabolismo , Soluções , Células Estromais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...