Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1387454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799468

RESUMO

Introduction: Mycobacteria are known to exert a range of heterologous effects on the immune system. The mycobacteria-based Freund's Complete Adjuvant is a potent non-specific stimulator of the immune response used in immunization protocols promoting antibody production, and Mycobacterium bovis Bacille Calmette Guérin (BCG) vaccination has been linked with decreased morbidity and mortality beyond the specific protection it provides against tuberculosis (TB) in some populations and age groups. The role of heterologous antibodies in this phenomenon, if any, remains unclear and under-studied. Methods: We set out to evaluate antibody responses to a range of unrelated pathogens following infection with Mycobacterium tuberculosis (M.tb) and vaccination with BCG or a candidate TB vaccine, MTBVAC, in non-human primates. Results: We demonstrate a significant increase in the titer of antibodies against SARS-CoV-2, cytomegalovirus, Epstein-Barr virus, tetanus toxoid, and respiratory syncytial virus antigens following low-dose aerosol infection with M.tb. The magnitude of some of these responses correlated with TB disease severity. However, vaccination with BCG administered by the intradermal, intravenous or aerosol routes, or intradermal delivery of MTBVAC, did not increase antibody responses against unrelated pathogens. Discussion: Our findings suggest that it is unlikely that heterologous antibodies contribute to the non-specific effects of these vaccines. The apparent dysregulation of B cell responses associated with TB disease warrants further investigation, with potential implications for risk of B cell cancers and novel therapeutic strategies.


Assuntos
Vacina BCG , Mycobacterium tuberculosis , Tuberculose , Vacinação , Animais , Vacina BCG/imunologia , Vacina BCG/administração & dosagem , Tuberculose/imunologia , Tuberculose/prevenção & controle , Mycobacterium tuberculosis/imunologia , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas contra a Tuberculose/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Feminino , Macaca mulatta , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Imunidade Heteróloga , Masculino
2.
Front Immunol ; 14: 1163159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920464

RESUMO

The development of novel optimized vaccines against coronavirus disease 2019 (COVID-19) that are capable of controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and the appearance of different variants of concern (VoC) is needed to fully prevent the transmission of the virus. In the present study, we describe the enhanced immunogenicity and efficacy elicited in hamsters by a modified vaccinia virus Ankara (MVA) vector expressing a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein [termed MVA-S(3P)]. Hamsters vaccinated with one or two doses of MVA-S(3P) developed high titers of S-binding IgG antibodies and neutralizing antibodies against the ancestral Wuhan SARS-CoV-2 virus and VoC beta, gamma, and delta, as well as against omicron, although with a somewhat lower neutralization activity. After SARS-CoV-2 challenge, vaccinated hamsters did not lose body weight as compared to matched placebo (MVA-WT) controls. Consistently, vaccinated hamsters exhibited significantly reduced viral RNA in the lungs and nasal washes, and no infectious virus was detected in the lungs in comparison to controls. Furthermore, almost no lung histopathology was detected in MVA-S(3P)-vaccinated hamsters, which also showed significantly reduced levels of proinflammatory cytokines in the lungs compared to unvaccinated hamsters. These results reinforce the use of MVA-S(3P) as a vaccine candidate against COVID-19 in clinical trials.


Assuntos
COVID-19 , Animais , Cricetinae , COVID-19/prevenção & controle , SARS-CoV-2 , Vaccinia virus/genética , Anticorpos Neutralizantes
3.
Oncoimmunology ; 12(1): 2160094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36567803

RESUMO

Bacillus Calmette-Guérin (BCG), the nonpathogenic Mycobacterium bovis strain used as tuberculosis vaccine, has been successfully used as treatment for non-muscle invasive bladder cancer for decades, and suggested to potentiate cellular and humoral immune responses. However, the exact mechanism of action is not fully understood. We previously described that BCG mainly activated anti-tumor cytotoxic NK cells with upregulation of CD56 and a CD16+ phenotype. Now, we show that stimulation of human peripheral blood mononuclear cells with iBCG, a preparation based on BCG-Moreau, expands oligoclonal γδ T-cells, with a cytotoxic phenotype, together with anti-tumor CD56high CD16+ NK cells. We have used scRNA-seq, flow cytometry, and functional assays to characterize these BCG-activated γδ T-cells in detail. They had a high IFNγ secretion signature with expression of CD27+ and formed conjugates with bladder cancer cells. BCG-activated γδ T-cells proliferated strongly in response to minimal doses of cytokines and had anti-tumor functions, although not fully based on degranulation. BCG was sufficient to stimulate proliferation of γδ T-cells when cultured with other PBMC; however, BCG alone did not stimulate expansion of purified γδ T-cells. The characterization of these non-donor restricted lymphocyte populations, which can be expanded in vitro, could provide a new approach to prepare cell-based immunotherapy tools.


Assuntos
Antineoplásicos , Mycobacterium bovis , Neoplasias da Bexiga Urinária , Humanos , Vacina BCG/uso terapêutico , Leucócitos Mononucleares , Células Matadoras Naturais , Neoplasias da Bexiga Urinária/terapia , Linfócitos T
4.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35781395

RESUMO

BACKGROUND: Intravesical BCG is the gold-standard therapy for non-muscle invasive bladder cancer (NMIBC); however, it still fails in a significant proportion of patients, so improved treatment options are urgently needed. METHODS: Here, we compared BCG antitumoral efficacy with another live attenuated mycobacteria, MTBVAC, in an orthotopic mouse model of bladder cancer (BC). We aimed to identify both bacterial and host immunological factors to understand the antitumoral mechanisms behind effective bacterial immunotherapy for BC. RESULTS: We found that the expression of the BCG-absent proteins ESAT6/CFP10 by MTBVAC was determinant in mediating bladder colonization by the bacteria, which correlated with augmented antitumoral efficacy. We further analyzed the mechanism of action of bacterial immunotherapy and found that it critically relied on the adaptive cytotoxic response. MTBVAC enhanced both tumor antigen-specific CD4+ and CD8+ T-cell responses, in a process dependent on stimulation of type 1 conventional dendritic cells. Importantly, improved intravesical bacterial immunotherapy using MBTVAC induced eradication of fully established bladder tumors, both as a monotherapy and specially in combination with the immune checkpoint inhibitor antiprogrammed cell death ligand 1 (anti PD-L1). CONCLUSION: These results contribute to the understanding of the mechanisms behind successful bacterial immunotherapy against BC and characterize a novel therapeutic approach for BCG-unresponsive NMIBC cases.


Assuntos
Neoplasias da Bexiga Urinária , Animais , Vacina BCG/uso terapêutico , Bactérias , Inibidores de Checkpoint Imunológico , Imunoterapia , Camundongos , Neoplasias da Bexiga Urinária/terapia
5.
Front Immunol ; 13: 845887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371043

RESUMO

Novel safe, immunogenic, and effective vaccines are needed to control the COVID-19 pandemic, caused by SARS-CoV-2. Here, we describe the safety, robust immunogenicity, and potent efficacy elicited in rhesus macaques by a modified vaccinia virus Ankara (MVA) vector expressing a full-length SARS-CoV-2 spike (S) protein (MVA-S). MVA-S vaccination was well tolerated and induced S and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against SARS-CoV-2 and several variants of concern. S-specific IFNγ, but not IL-4, -producing cells were also elicited. After SARS-CoV-2 challenge, vaccinated animals showed a significant strong reduction of virus loads in bronchoalveolar lavages (BAL) and decreased levels in throat and nasal mucosa. Remarkably, MVA-S also protected macaques from fever and infection-induced cytokine storm. Computed tomography and histological examination of the lungs showed reduced lung pathology in MVA-S-vaccinated animals. These findings favor the use of MVA-S as a potential vaccine for SARS-CoV-2 in clinical trials.


Assuntos
COVID-19 , Vaccinia virus , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Macaca mulatta , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Vaccinia virus/genética
6.
Front Immunol ; 13: 845969, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371064

RESUMO

To control the coronavirus disease 2019 (COVID-19) pandemic and the emergence of different variants of concern (VoCs), novel vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed. In this study, we report the potent immunogenicity and efficacy induced in hamsters by a vaccine candidate based on a modified vaccinia virus Ankara (MVA) vector expressing a human codon optimized full-length SARS-CoV-2 spike (S) protein (MVA-S). Immunization with one or two doses of MVA-S elicited high titers of S- and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against parental SARS-CoV-2 and VoC alpha, beta, gamma, delta, and omicron. After SARS-CoV-2 challenge, MVA-S-vaccinated hamsters showed a significantly strong reduction of viral RNA and infectious virus in the lungs compared to the MVA-WT control group. Moreover, a marked reduction in lung histopathology was also observed in MVA-S-vaccinated hamsters. These results favor the use of MVA-S as a potential vaccine candidate for SARS-CoV-2 in clinical trials.


Assuntos
COVID-19 , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cricetinae , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Vaccinia virus/genética
7.
Cell Rep Med ; 2(1): 100185, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33521699

RESUMO

BCG vaccination can strengthen protection against pathogens through the induction of epigenetic and metabolic reprogramming of innate immune cells, a process called trained immunity. We and others recently demonstrated that mucosal or intravenous BCG better protects rhesus macaques from Mycobacterium tuberculosis infection and TB disease than standard intradermal vaccination, correlating with local adaptive immune signatures. In line with prior mouse data, here, we show in rhesus macaques that intravenous BCG enhances innate cytokine production associated with changes in H3K27 acetylation typical of trained immunity. Alternative delivery of BCG does not alter the cytokine production of unfractionated bronchial lavage cells. However, mucosal but not intradermal vaccination, either with BCG or the M. tuberculosis-derived candidate MTBVAC, enhances innate cytokine production by blood- and bone marrow-derived monocytes associated with metabolic rewiring, typical of trained immunity. These results provide support to strategies for improving TB vaccination and, more broadly, modulating innate immunity via mucosal surfaces.


Assuntos
Vacina BCG/administração & dosagem , Imunidade nas Mucosas , Mycobacterium tuberculosis/imunologia , Mucosa Respiratória/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/prevenção & controle , Acetilação , Administração Intranasal , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Medula Óssea/microbiologia , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Feminino , Regulação da Expressão Gênica , Histonas/genética , Histonas/imunologia , Injeções Intravenosas , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Macaca mulatta , Masculino , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Mucosa Respiratória/microbiologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
8.
Cell Rep Med ; 2(1): 100187, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33521701

RESUMO

To fight tuberculosis, better vaccination strategies are needed. Live attenuated Mycobacterium tuberculosis-derived vaccine, MTBVAC, is a promising candidate in the pipeline, proven to be safe and immunogenic in humans so far. Independent studies have shown that pulmonary mucosal delivery of Bacillus Calmette-Guérin (BCG), the only tuberculosis (TB) vaccine available today, confers superior protection over standard intradermal immunization. Here we demonstrate that mucosal MTBVAC is well tolerated, eliciting polyfunctional T helper type 17 cells, interleukin-10, and immunoglobulins in the airway and yielding a broader antigenic profile than BCG in rhesus macaques. Beyond our previous work, we show that local immunoglobulins, induced by MTBVAC and BCG, bind to M. tuberculosis and enhance pathogen uptake. Furthermore, after pulmonary vaccination, but not M. tuberculosis infection, local T cells expressed high levels of mucosal homing and tissue residency markers. Our data show that pulmonary MTBVAC administration has the potential to enhance its efficacy and justifies further exploration of mucosal vaccination strategies in preclinical efficacy studies.


Assuntos
Vacina BCG/administração & dosagem , Imunidade nas Mucosas , Mycobacterium tuberculosis/imunologia , Mucosa Respiratória/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/prevenção & controle , Administração Intranasal , Animais , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Feminino , Regulação da Expressão Gênica , Injeções Intradérmicas , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Macaca mulatta , Masculino , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Mucosa Respiratória/microbiologia , Células Th1/imunologia , Células Th1/microbiologia , Células Th17/imunologia , Células Th17/microbiologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
9.
NPJ Vaccines ; 6(1): 4, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397991

RESUMO

A single intradermal vaccination with MTBVAC given to adult rhesus macaques was well tolerated and conferred a significant improvement in outcome following aerosol exposure to M. tuberculosis compared to that provided by a single BCG vaccination. Vaccination with MTBVAC resulted in a significant reduction in M. tuberculosis infection-induced disease pathology measured using in vivo medical imaging, in gross pathology lesion counts and pathology scores recorded at necropsy, the frequency and severity of pulmonary granulomas and the frequency of recovery of viable M. tuberculosis from extrapulmonary tissues following challenge. The immune profiles induced following immunisation with MTBVAC reflect those identified in human clinical trials of MTBVAC. Evaluation of MTBVAC- and TB peptide-pool-specific T-cell cytokine production revealed a predominantly Th1 response from poly- (IFN-γ+TNF-α+IL2+) and multi-(IFN-γ+TNF-α+) functional CD4 T cells, while only low levels of Th22, Th17 and cytokine-producing CD8 T-cell populations were detected together with low-level, but significant, increases in CFP10-specific IFN-γ secreting cells. In this report, we describe concordance between immune profiles measured in clinical trials and a macaque pre-clinical study demonstrating significantly improved outcome after M. tuberculosis challenge as evidence to support the continued development of MTBVAC as an effective prophylactic vaccine for TB vaccination campaigns.

10.
Front Microbiol ; 11: 1339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625195

RESUMO

Vaccination through the natural route of infection represents an attractive immunization strategy in vaccinology. In the case of tuberculosis, vaccine delivery by the respiratory route has regained interest in recent years, showing efficacy in different animal models. In this context, respiratory vaccination triggers lung immunological mechanisms which are omitted when vaccines are administered by parenteral route. However, contribution of mucosal antibodies to vaccine- induced protection has been poorly studied. In the present study, we evaluated in mice and non-human primates (NHP) a novel whole cell inactivated vaccine (MTBVAC HK), by mucosal administration. MTBVAC HK given by intranasal route to BCG-primed mice substantially improved the protective efficacy conferred by subcutaneous BCG only. Interestingly, this improved protection was absent in mice lacking polymeric Ig receptor (pIgR), suggesting a crucial role of mucosal secretory immunoglobulins in protective immunity. Our study in NHP confirmed the ability of MTBVAC HK to trigger mucosal immunoglobulins. Importantly, in vitro assays demonstrated the functionality of these immunoglobulins to induce M. tuberculosis opsonization in the presence of human macrophages. Altogether, our results suggest that mucosal immunoglobulins can be induced by vaccination to improve protection against tuberculosis and therefore, they represent a promising target for next generation tuberculosis vaccines.

11.
Vet Res ; 50(1): 82, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615555

RESUMO

Effective vaccines against tuberculosis (TB) are needed in order to prevent TB transmission in human and animal populations. Evaluation of TB vaccines may be facilitated by using reliable animal models that mimic host pathophysiology and natural transmission of the disease as closely as possible. In this study, we evaluated the immunogenicity and efficacy of two attenuated vaccines, BCG and MTBVAC, after each was given to 17 goats (2 months old) and then exposed for 9 months to goats infected with M. caprae. In general, MTBVAC-vaccinated goats showed higher interferon-gamma release than BCG vaccinated goats in response to bovine protein purified derivative and ESAT-6/CFP-10 antigens and the response was significantly higher than that observed in the control group until challenge. All animals showed lesions consistent with TB at the end of the study. Goats that received either vaccine showed significantly lower scores for pulmonary lymph nodes and total lesions than unvaccinated controls. Both MTBVAC and BCG vaccines proved to be immunogenic and effective in reducing severity of TB pathology caused by M. caprae. Our model system of natural TB transmission may be useful for evaluating and optimizing vaccines.


Assuntos
Vacina BCG/imunologia , Doenças das Cabras/imunologia , Imunogenicidade da Vacina/imunologia , Mycoplasma/fisiologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/veterinária , Animais , Doenças das Cabras/transmissão , Cabras , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Tuberculose/imunologia , Tuberculose/transmissão , Vacinas Atenuadas/imunologia
12.
Lancet Respir Med ; 7(9): 757-770, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31416768

RESUMO

BACKGROUND: Infants are a key target population for new tuberculosis vaccines. We assessed the safety and immunogenicity of the live-attenuated Mycobacterium tuberculosis vaccine candidate MTBVAC in adults and infants in a region where transmission of tuberculosis is very high. METHODS: We did a randomised, double-blind, BCG-controlled, dose-escalation trial at the South African Tuberculosis Vaccine Initiative site near Cape Town, South Africa. Healthy adult community volunteers who were aged 18-50 years, had received BCG vaccination as infants, were HIV negative, had negative interferon-γ release assay (IGRA) results, and had no personal history of tuberculosis or current household contact with someone with tuberculosis were enrolled in a safety cohort. Infants born to HIV-negative women with no personal history of tuberculosis or current household contact with a person with tuberculosis and who were 96 h old or younger, generally healthy, and had not yet received routine BCG vaccination were enrolled in a separate infant cohort. Eligible adults were randomly assigned (1:1) to receive either BCG Vaccine SSI (5 × 105 colony forming units [CFU] of Danish strain 1331 in 0·1 mL diluent) or MTBVAC (5 × 105 CFU in 0·1 mL) intradermally in the deltoid region of the arm. After favourable review of 28-day reactogenicity and safety data in the adult cohort, infants were randomly assigned (1:3) to receive either BCG Vaccine SSI (2·5 × 105 CFU in 0·05 mL diluent) or MTBVAC in three sequential cohorts of increasing MTBVAC dose (2·5 × 103 CFU, 2·5 × 104 CFU, and 2·5 × 105 CFU in 0·05 mL) intradermally in the deltoid region of the arm. QuantiFERON-TB Gold In-Tube IGRA was done on days 180 and 360. For both randomisations, a pre-prepared block randomisation schedule was used. Participants (and their parents or guardians in the case of infant participants), investigators, and other clinical and laboratory staff were masked to intervention allocation. The primary outcomes, which were all measured in the infant cohort, were solicited and unsolicited local adverse events and serious adverse events until day 360; non-serious systemic adverse events until day 28 and vaccine-specific CD4 and CD8 T-cell responses on days 7, 28, 70, 180, and 360. Secondary outcomes measured in adults were local injection-site and systemic reactions and haematology and biochemistry at study day 7 and 28. Safety analyses and immunogenicity analyses were done in all participants who received a dose of vaccine. This trial is registered with ClinicalTrials.gov, number NCT02729571. FINDINGS: Between Sept 29, 2015, and Nov 16, 2015, 62 adults were screened and 18 were enrolled and randomly assigned, nine each to the BCG and MTBVAC groups. Between Feb 12, 2016, and Sept 21, 2016, 36 infants were randomly assigned-eight to the BCG group, nine to the 2·5 × 103 CFU MTBVAC group, nine to the 2·5 × 104 CFU group, and ten to the 2·5 × 105 CFU group. Mild injection-site reactions occurred only in infants in the BCG and the 2·5 × 105 CFU MTBVAC group, with no evidence of local or regional injection-site complications. Systemic adverse events were evenly distributed across BCG and MTBVAC dose groups, and were mostly mild in severity. Eight serious adverse events were reported in seven vaccine recipients (one adult MTBVAC recipient, one infant BCG recipient, one infant in the 2·5 × 103 CFU MTBVAC group, two in the 2·5 × 104 CFU MTBVAC group, and two in the 2·5 × 105 CFU MTBVAC group), including one infant in the 2·5 × 103 CFU MTBVAC group treated for unconfirmed tuberculosis and one in the 2·5 × 105 CFU MTBVAC group treated for unlikely tuberculosis. One infant died as a result of possible viral pneumonia. Vaccination with all MTBVAC doses induced durable antigen-specific T-helper-1 cytokine-expressing CD4 cell responses in infants that peaked 70 days after vaccination and were detectable 360 days after vaccination. For the highest MTBVAC dose (ie, 2·5 × 105 CFU), these responses exceeded responses induced by an equivalent dose of the BCG vaccine up to 360 days after vaccination. Dose-related IGRA conversion was noted in three (38%) of eight infants in the 2·5 × 103 CFU MTBVAC group, six (75%) of eight in the 2·5 × 104 CFU MTBVAC group, and seven (78%) of nine in the 2·5 × 105 CFU MTBVAC group at day 180, compared with none of seven infants in the BCG group. By day 360, IGRA reversion had occurred in all three infants (100%) in the 2·5 × 103 CFU MTBVAC group, four (67%) of the six in the 2·5 × 104 CFU MTBVAC group, and three (43%) of the seven in the 2·5 × 105 CFU MTBVAC group. INTERPRETATION: MTBVAC had acceptable reactogenicity, and induced a durable CD4 cell response in infants. The evidence of immunogenicity supports progression of MTBVAC into larger safety and efficacy trials, but also confounds interpretation of tests for M tuberculosis infection, highlighting the need for stringent endpoint definition. FUNDING: Norwegian Agency for Development Cooperation, TuBerculosis Vaccine Initiative, UK Department for International Development, and Biofabri.


Assuntos
Vacina BCG/uso terapêutico , Vacinas contra a Tuberculose/uso terapêutico , Tuberculose/prevenção & controle , Adolescente , Adulto , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Relação Dose-Resposta a Droga , Método Duplo-Cego , Vias de Administração de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , África do Sul , Tuberculose/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico , Adulto Jovem
13.
Clin Proteomics ; 14: 36, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29142508

RESUMO

BACKGROUND: Bovine purified protein derivative (bPPD) and avian purified protein derivative (aPPD) are widely used for bovine tuberculosis diagnosis. However, little is known about their qualitative and quantitative characteristics, which makes their standardisation difficult. In addition, bPPD can give false-positive tuberculosis results because of sequence homology between Mycobacterium bovis (M. bovis) and M. avium proteins. Thus, the objective of this study was to carry out a proteomic characterisation of bPPD, aPPD and an immunopurified subcomplex from bPPD called P22 in order to identify proteins contributing to cross-reactivity among these three products in tuberculosis diagnosis. METHODS: Trypsin digests of bPPD, aPPD and P22 were analysed by nanoscale liquid chromatography-electrospray ionization tandem mass spectrometry. Mice were immunised with bPPD or aPPD, and their serum was tested by indirect ELISA for reactivity against these preparations as well as against P22. RESULTS: A total of 456 proteins were identified in bPPD, 1019 in aPPD and 118 in P22; 146 of these proteins were shared by bPPD and aPPD, and 43 were present in all three preparations. Candidate proteins that may cause cross-reactivity between bPPD and aPPD were identified based on protein abundance and antigenic propensity. Serum reactivity experiments indicated that P22 may provide greater specificity than bPPD with similar sensitivity for ELISA-type detection of antibodies against M. tuberculosis complex. CONCLUSION: The subpreparation from bPPD called P22 may be an alternative to bPPD for serodiagnosis of bovine tuberculosis, since it shares fewer proteins with aPPD than bPPD does, reducing risk of cross-reactivity with anti-M. avium antibodies.

14.
Res Vet Sci ; 103: 73-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26679799

RESUMO

The immunogenicity and diagnostic interference caused by M. tuberculosis SO2, a prototype vaccine first time tested in goats was evaluated. Tuberculosis-free goats were distributed in four groups: [1], non-vaccinated; [2], subcutaneously (SC) BCG vaccinated; [3], intranasally (IN) SO2 vaccinated and [4], SC SO2 vaccinated. Intradermal tuberculin and IFN-γ tests using PPDs and alternative antigenic cocktails containing mainly ESAT-6 and CFP-10 (E/C) were applied at different times post-vaccination. Results showed a significant (p<0.05) increase in the number of reactors detected using both PPD-based intradermal and IFN-γ tests at different times in all the vaccinated groups. No intradermal reactivity was detected in the vaccinated goats using a cocktail containing E/C, Rv3615c and Rv3020c. A higher overall reactivity was observed in the group [4] in comparison with the other vaccinated groups. Results showed that antigens used to differentiate BCG vaccinated animals could be potentially used to differentiate SO2 vaccinated ones.


Assuntos
Doenças das Cabras/transmissão , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/veterinária , Animais , Feminino , Doenças das Cabras/microbiologia , Cabras , Espanha , Tuberculose/microbiologia , Tuberculose/transmissão , Vacinação
15.
Lancet Respir Med ; 3(12): 953-62, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26598141

RESUMO

BACKGROUND: Tuberculosis remains one of the world's deadliest transmissible diseases despite widespread use of the BCG vaccine. MTBVAC is a new live tuberculosis vaccine based on genetically attenuated Mycobacterium tuberculosis that expresses most antigens present in human isolates of M tuberculosis. We aimed to compare the safety of MTBVAC with BCG in healthy adult volunteers. METHODS: We did this single-centre, randomised, double-blind, controlled phase 1 study at the Centre Hospitalier Universitaire Vaudois (CHUV; Lausanne, Switzerland). Volunteers were eligible for inclusion if they were aged 18-45 years, clinically healthy, HIV-negative and tuberculosis-negative, and had no history of active tuberculosis, chemoprophylaxis for tuberculosis, or BCG vaccination. Volunteers fulfilling the inclusion criteria were randomly assigned to three cohorts in a dose-escalation manner. Randomisation was done centrally by the CHUV Pharmacy and treatments were masked from the study team and volunteers. As participants were recruited within each cohort, they were randomly assigned 3:1 to receive MTBVAC or BCG. Of the participants allocated MTBVAC, those in the first cohort received 5 × 10(3) colony forming units (CFU) MTBVAC, those in the second cohort received 5 × 10(4) CFU MTBVAC, and those in the third cohort received 5 × 10(5) CFU MTBVAC. In all cohorts, participants assigned to receive BCG were given 5 × 10(5) CFU BCG. Each participant received a single intradermal injection of their assigned vaccine in 0·1 mL sterile water in their non-dominant arm. The primary outcome was safety in all vaccinated participants. Secondary outcomes included whole blood cell-mediated immune response to live MTBVAC and BCG, and interferon γ release assays (IGRA) of peripheral blood mononuclear cells. This trial is registered with ClinicalTrials.gov, number NCT02013245. FINDINGS: Between Jan 23, 2013, and Nov 6, 2013, we enrolled 36 volunteers into three cohorts, each of which consisted of nine participants who received MTBVAC and three who received BCG. 34 volunteers completed the trial. The safety of vaccination with MTBVAC at all doses was similar to that of BCG, and vaccination did not induce any serious adverse events. All individuals were IGRA negative at the end of follow-up (day 210). After whole blood stimulation with live MTBVAC or BCG, MTBVAC was at least as immunogenic as BCG. At the same dose as BCG (5×10(5) CFU), although no statistical significance could be achieved, there were more responders in the MTBVAC group than in the BCG group, with a greater frequency of polyfunctional CD4+ central memory T cells. INTERPRETATION: To our knowledge, MTBVAC is the first live-attenuated M tuberculosis vaccine to reach clinical assessment, showing similar safety to BCG. MTBVAC seemed to be at least as immunogenic as BCG, but the study was not powered to investigate this outcome. Further plans to use more immunogenicity endpoints in a larger number of volunteers (adults and adolescents) are underway, with the aim to thoroughly characterise and potentially distinguish immunogenicity between MTBVAC and BCG in tuberculosis-endemic countries. Combined with an excellent safety profile, these data support advanced clinical development in high-burden tuberculosis endemic countries. FUNDING: Biofabri and Bill & Melinda Gates Foundation through the TuBerculosis Vaccine Initiative (TBVI).


Assuntos
Vacinas contra a Tuberculose , Tuberculose/prevenção & controle , Adulto , Vacina BCG , Método Duplo-Cego , Feminino , Humanos , Imunização , Masculino , Vacinas contra a Tuberculose/efeitos adversos , Vacinas Atenuadas
16.
Vaccine ; 31(42): 4867-73, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23965219

RESUMO

The development of a new tuberculosis vaccine is an urgent need due to the failure of the current vaccine, BCG, to protect against the respiratory form of the disease. MTBVAC is an attenuated Mycobacterium tuberculosis vaccine candidate genetically engineered to fulfil the Geneva consensus requirements to enter human clinical trials. We selected a M. tuberculosis clinical isolate to generate two independent deletions without antibiotic-resistance markers in the genes phoP, coding for a transcription factor key for the regulation of M. tuberculosis virulence, and fadD26, essential for the synthesis of the complex lipids phthiocerol dimycocerosates (DIM), one of the major mycobacterial virulence factors. The resultant strain MTBVAC exhibits safety and biodistribution profiles similar to BCG and confers superior protection in preclinical studies. These features have enabled MTBVAC to be the first live attenuated M. tuberculosis vaccine to enter clinical evaluation.


Assuntos
Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Animais , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Feminino , Deleção de Genes , Cobaias , Masculino , Camundongos , Mycobacterium tuberculosis/genética , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/efeitos adversos , Vacinas contra a Tuberculose/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Fatores de Virulência/genética
17.
BMC Vet Res ; 8: 191, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23072619

RESUMO

BACKGROUND: Most countries carrying out campaigns of bovine tuberculosis (TB) eradication impose a ban on the use of mycobacterial vaccines in cattle. However, vaccination against paratuberculosis (PTB) in goats is often allowed even when its effect on TB diagnosis has not been fully evaluated. To address this issue, goat kids previously vaccinated against PTB were experimentally infected with TB. RESULTS: Evaluation of interferon-γ (IFN-γ) secretion induced by avian and bovine tuberculins (PPD) showed a predominant avian PPD-biased response in the vaccinated group from week 4 post-vaccination onward. Although 60% of the animals were bovine reactors at week 14, avian PPD-biased responses returned at week 16. After challenge with M. caprae, the IFN-γ responses radically changed to show predominant bovine PPD-biased responses from week 18 onward. In addition, cross-reactions with bovine PPD that had been observed in the vaccinated group at week 14 were reduced when using the M. tuberculosis complex-specific antigens ESAT-6/CFP-10 and Rv3615c as new DIVA (differentiation of infected and vaccinated animals) reagents, which further maintained sensitivity post-challenge. Ninety percent of the animals reacted positively to the tuberculin cervical comparative intradermal test performed at 12 weeks post-infection. Furthermore, post-mortem analysis showed reductions in tuberculous lesions and bacterial burden in some vaccinated animals, particularly expressed in terms of the degree of extrapulmonary dissemination of TB infection. CONCLUSIONS: Our results suggest a degree of interference of PTB vaccination with current TB diagnostics that can be fully mitigated when using new DIVA reagents. A partial protective effect associated with vaccination was also observed in some vaccinated animals.


Assuntos
Doenças das Cabras/prevenção & controle , Paratuberculose/prevenção & controle , Tuberculose/veterinária , Animais , Proteínas de Bactérias , Bovinos , Doenças dos Bovinos/prevenção & controle , Proteção Cruzada , Doenças das Cabras/sangue , Cabras , Interferon gama/sangue , Paratuberculose/diagnóstico , Especificidade da Espécie , Tuberculina/imunologia , Tuberculose/diagnóstico , Tuberculose/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...