Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0300168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38900831

RESUMO

The motor features of Parkinson's disease result from loss of dopaminergic neurons in the substantia nigra with autophagy dysfunction being closely linked to this disease. While a large body of work focusing on protein effectors of autophagy has been reported, regulation of autophagy by lipids has garnered far less attention. Therefore, we sought to identify endogenous lipid molecules that act as signaling mediators of autophagy in differentiated SH-SY5Y cells, a commonly used dopaminergic neuron-like cell model. In order to accomplish this goal, we assessed the role of a fatty acid-binding protein (FABP) family member on autophagy due to its function as an intracellular lipid chaperone. We focused specifically upon FABP5 due to its heightened expression in dopaminergic neurons within the substantia nigra and SH-SY5Y cells. Here, we report that knockdown of FABP5 resulted in suppression of autophagy in differentiated SH-SY5Y cells suggesting the possibility of an autophagic role for an interacting lipid. A lipidomic screen of FABP5-interacting lipids uncovered hits that include 5-oxo-eicosatetraenoic acid (5OE) and its precursor metabolite, arachidonic acid (AA). Additionally, other long-chain fatty acids were found to bind FABP5, such as stearic acid (SA), hydroxystearic acid (HSA), and palmitic acid (PA). The addition of 5OE, SA, and HSA but not AA or PA, led to potent inhibition of autophagy in SH-SY5Y cells. To identify potential molecular mechanisms for autophagy inhibition by these lipids, RNA-Seq was performed which revealed both shared and divergent signaling pathways between the lipid-treated groups. These findings suggest a role for these lipids in modulating autophagy through diverse signaling pathways and could represent novel therapeutic targets for Parkinson's disease.


Assuntos
Autofagia , Proteínas de Ligação a Ácido Graxo , Humanos , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Linhagem Celular Tumoral , Diferenciação Celular , Neurônios Dopaminérgicos/metabolismo , Transdução de Sinais
2.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399441

RESUMO

The essential role of nicotinamide adenine dinucleotide+ (NAD+) in redox reactions during oxidative respiration is well known, yet the coenzyme and regulator functions of NAD+ in diverse and important processes are still being discovered. Maintaining NAD+ levels through diet is essential for health. In fact, the United States requires supplementation of the NAD+ precursor niacin into the food chain for these reasons. A large body of research also indicates that elevating NAD+ levels is beneficial for numerous conditions, including cancer, cardiovascular health, inflammatory response, and longevity. Consequently, strategies have been created to elevate NAD+ levels through dietary supplementation with NAD+ precursor compounds. This paper explores current research regarding these therapeutic compounds. It then focuses on the NAD+ regulation of IL-13 signaling, which is a research area garnering little attention. IL-13 is a critical regulator of allergic response and is associated with Parkinson's disease and cancer. Evidence supporting the notion that increasing NAD+ levels might reduce IL-13 signal-induced inflammatory response is presented. The assessment is concluded with an examination of reports involving popular precursor compounds that boost NAD+ and their associations with IL-13 signaling in the context of offering a means for safely and effectively reducing inflammatory response by IL-13.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...