Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37801004

RESUMO

Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT) initiation depends on interaction between viral 5'-leader RNA, RT and host tRNA3Lys. Therefore, we sought to identify co-evolutionary changes between the 5'-leader and RT in viruses developing RT-inhibitor resistance mutations. We sequenced 5'-leader positions 37-356 of paired plasma virus samples from 29 individuals developing the nucleoside RT inhibitor (NRTI)-resistance mutation M184V, 19 developing a non-nucleoside RT inhibitor (NNRTI)-resistance mutation and 32 untreated controls. 5'-Leader variants were defined as positions where ≥20 % of next-generation sequencing (NGS) reads differed from the HXB2 sequence. Emergent mutations were defined as nucleotides undergoing a ≥4-fold change in proportion between baseline and follow-up. Mixtures were defined as positions containing ≥2 nucleotides each present in ≥20 % of NGS reads. Among 80 baseline sequences, 87 positions (27.2 %) contained a variant; 52 contained a mixture. Position 201 was the only position more likely to develop a mutation in the M184V (9/29 vs 0/32; P=0.0006) or NNRTI-resistance (4/19 vs 0/32; P=0.02; Fisher's exact test) groups than the control group. Mixtures at positions 200 and 201 occurred in 45.0 and 28.8 %, respectively, of baseline samples. Because of the high proportion of mixtures at these positions, we analysed 5'-leader mixture frequencies in two additional datasets: five publications reporting 294 dideoxyterminator clonal GenBank sequences from 42 individuals and six National Center for Biotechnology Information (NCBI) BioProjects reporting NGS datasets from 295 individuals. These analyses demonstrated position 200 and 201 mixtures at proportions similar to those in our samples and at frequencies several times higher than at all other 5'-leader positions. Although we did not convincingly document co-evolutionary changes between RT and 5'-leader sequences, we identified a novel phenomenon, wherein positions 200 and 201 immediately downstream of the HIV-1 primer binding site exhibited an extraordinarily high likelihood of containing a nucleotide mixture. Possible explanations for the high mixture rates are that these positions are particularly error-prone or provide a viral fitness advantage.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/uso terapêutico , HIV-1/genética , Mutação , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , Nucleotídeos/uso terapêutico , Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral/genética
2.
medRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37333388

RESUMO

Background: HIV-1 RT initiation depends on interaction between viral 5'-leader RNA, RT, and host tRNA3Lys. We therefore sought to identify co-evolutionary changes between the 5'-leader and RT in viruses developing RT-inhibitor resistance mutations. Methods: We sequenced 5'-leader positions 37-356 of paired plasma virus samples from 29 individuals developing the NRTI-resistance mutation M184V, 19 developing an NNRTI-resistance mutation, and 32 untreated controls. 5'-leader variants were defined as positions where ≥20% of NGS reads differed from the HXB2 sequence. Emergent mutations were defined as nucleotides undergoing ≥4-fold change in proportion between baseline and follow-up. Mixtures were defined as positions containing ≥2 nucleotides each present in ≥20% of NGS reads. Results: Among 80 baseline sequences, 87 positions (27.2%) contained a variant; 52 contained a mixture. Position 201 was the only position more likely to develop a mutation in the M184V (9/29 vs. 0/32; p=0.0006) or NNRTI-resistance (4/19 vs. 0/32; p=0.02; Fisher's Exact Test) groups than the control group. Mixtures at positions 200 and 201 occurred in 45.0% and 28.8%, respectively, of baseline samples. Because of the high proportion of mixtures at these positions, we analyzed 5'-leader mixture frequencies in two additional datasets: five publications reporting 294 dideoxyterminator clonal GenBank sequences from 42 individuals and six NCBI BioProjects reporting NGS datasets from 295 individuals. These analyses demonstrated position 200 and 201 mixtures at proportions similar to those in our samples and at frequencies several times higher than at all other 5'-leader positions. Conclusions: Although we did not convincingly document co-evolutionary changes between RT and 5'-leader sequences, we identified a novel phenomenon, wherein positions 200 and 201, immediately downstream of the HIV-1 primer binding site exhibited an extraordinarily high likelihood of containing a nucleotide mixture. Possible explanations for the high mixture rates are that these positions are particularly error-prone or provide a viral fitness advantage.

3.
Proc Natl Acad Sci U S A ; 120(26): e2215556120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339210

RESUMO

Conformational dynamics play essential roles in RNA function. However, detailed structural characterization of excited states of RNA remains challenging. Here, we apply high hydrostatic pressure (HP) to populate excited conformational states of tRNALys3, and structurally characterize them using a combination of HP 2D-NMR, HP-SAXS (HP-small-angle X-ray scattering), and computational modeling. HP-NMR revealed that pressure disrupts the interactions of the imino protons of the uridine and guanosine U-A and G-C base pairs of tRNALys3. HP-SAXS profiles showed a change in shape, but no change in overall extension of the transfer RNA (tRNA) at HP. Configurations extracted from computational ensemble modeling of HP-SAXS profiles were consistent with the NMR results, exhibiting significant disruptions to the acceptor stem, the anticodon stem, and the D-stem regions at HP. We propose that initiation of reverse transcription of HIV RNA could make use of one or more of these excited states.


Assuntos
Anticódon , RNA , Conformação de Ácido Nucleico , Espalhamento a Baixo Ângulo , Difração de Raios X , RNA de Transferência de Lisina/química
4.
Nucleic Acids Res ; 50(18): 10201-10211, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-35882385

RESUMO

Ribosomes are remarkable in their malleability to accept diverse aminoacyl-tRNA substrates from both the same organism and other organisms or domains of life. This is a critical feature of the ribosome that allows the use of orthogonal translation systems for genetic code expansion. Optimization of these orthogonal translation systems generally involves focusing on the compatibility of the tRNA, aminoacyl-tRNA synthetase, and a non-canonical amino acid with each other. As we expand the diversity of tRNAs used to include non-canonical structures, the question arises as to the tRNA suitability on the ribosome. Specifically, we investigated the ribosomal translation of allo-tRNAUTu1, a uniquely shaped (9/3) tRNA exploited for site-specific selenocysteine insertion, using single-molecule fluorescence. With this technique we identified ribosomal disassembly occurring from translocation of allo-tRNAUTu1 from the A to the P site. Using cryo-EM to capture the tRNA on the ribosome, we pinpointed a distinct tertiary interaction preventing fluid translocation. Through a single nucleotide mutation, we disrupted this tertiary interaction and relieved the translation roadblock. With the continued diversification of genetic code expansion, our work highlights a targeted approach to optimize translation by distinct tRNAs as they move through the ribosome.


Continued expansion of the genetic code has required the use of synthetic tRNAs for decoding. Some of these synthetic tRNAs have unique structural features that are not observed in canonical tRNAs. Here, the authors applied single-molecule, biochemical and structural methods to determine whether these distinct features were deleterious for efficient protein translation on the ribosome. With a focus on selenocysteine insertion, the authors explored an allo-tRNA with a 9/3 acceptor domain. They observed a translational roadblock that occurred in A to P site tRNA translocation. This block was mediated by a tertiary interaction across the tRNA core, directing the variable arm position into an unfavorable conformation. A single-nucleotide mutation disrupted this interaction, providing flexibility in the variable arm and promoting efficient protein production.


Assuntos
Biossíntese de Proteínas , RNA de Transferência/ultraestrutura , Ribossomos/ultraestrutura , Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , Nucleotídeos/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Selenocisteína/química
5.
Nat Commun ; 12(1): 2500, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947853

RESUMO

Reverse transcription of the HIV-1 viral RNA genome (vRNA) is an integral step in virus replication. Upon viral entry, HIV-1 reverse transcriptase (RT) initiates from a host tRNALys3 primer bound to the vRNA genome and is the target of key antivirals, such as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Initiation proceeds slowly with discrete pausing events along the vRNA template. Despite prior medium-resolution structural characterization of reverse transcriptase initiation complexes (RTICs), higher-resolution structures of the RTIC are needed to understand the molecular mechanisms that underlie initiation. Here we report cryo-EM structures of the core RTIC, RTIC-nevirapine, and RTIC-efavirenz complexes at 2.8, 3.1, and 2.9 Å, respectively. In combination with biochemical studies, these data suggest a basis for rapid dissociation kinetics of RT from the vRNA-tRNALys3 initiation complex and reveal a specific structural mechanism of nucleic acid conformational stabilization during initiation. Finally, our results show that NNRTIs inhibit the RTIC and exacerbate discrete pausing during early reverse transcription.


Assuntos
Transcriptase Reversa do HIV/química , HIV-1/efeitos dos fármacos , RNA de Transferência de Lisina/química , RNA Viral/química , Inibidores da Transcriptase Reversa/química , Alcinos/química , Alcinos/farmacologia , Benzoxazinas/química , Benzoxazinas/farmacologia , Domínio Catalítico , Microscopia Crioeletrônica , Ciclopropanos/química , Ciclopropanos/farmacologia , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , HIV-1/genética , HIV-1/metabolismo , Modelos Moleculares , Nevirapina/química , Nevirapina/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA de Transferência de Lisina/genética , RNA Viral/genética , Inibidores da Transcriptase Reversa/farmacologia
6.
Curr Opin Struct Biol ; 65: 175-183, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32916568

RESUMO

Many viruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Human Immunodeficiency Virus (HIV), use RNA as their genetic material. How viruses harness RNA structure and RNA-protein interactions to control their replication remains obscure. Recent advances in the characterization of HIV-1 reverse transcriptase, the enzyme that converts its single-stranded RNA genome into a double-stranded DNA copy, reveal how the reverse transcription complex evolves during initiation. Here we highlight these advances in HIV-1 structural biology and discuss how they are furthering our understanding of HIV and related ribonucleoprotein complexes implicated in viral disease.


Assuntos
HIV-1/genética , Transcrição Reversa , Desenho de Fármacos , HIV-1/efeitos dos fármacos , RNA de Transferência/genética , Transcrição Reversa/efeitos dos fármacos , Ribonucleases/metabolismo
7.
J Mol Biol ; 432(16): 4499-4522, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32512005

RESUMO

A hallmark of the initiation step of HIV-1 reverse transcription, in which viral RNA genome is converted into double-stranded DNA, is that it is slow and non-processive. Biochemical studies have identified specific sites along the viral RNA genomic template in which reverse transcriptase (RT) stalls. These stalling points, which occur after the addition of three and five template dNTPs, may serve as checkpoints to regulate the precise timing of HIV-1 reverse transcription following viral entry. Structural studies of reverse transcriptase initiation complexes (RTICs) have revealed unique conformations that may explain the slow rate of incorporation; however, questions remain about the temporal evolution of the complex and features that contribute to strong pausing during initiation. Here we present cryo-electron microscopy and single-molecule characterization of an RTIC after three rounds of dNTP incorporation (+3), the first major pausing point during reverse transcription initiation. Cryo-electron microscopy structures of a +3 extended RTIC reveal conformational heterogeneity within the RTIC core. Three distinct conformations were identified, two of which adopt unique, likely off-pathway, intermediates in the canonical polymerization cycle. Single-molecule Förster resonance energy transfer experiments confirm that the +3 RTIC is more structurally dynamic than earlier-stage RTICs. These alternative conformations were selectively disrupted through structure-guided point mutations to shift single-molecule Förster resonance energy transfer populations back toward the on-pathway conformation. Our results support the hypothesis that conformational heterogeneity within the HIV-1 RTIC during pausing serves as an additional means of regulating HIV-1 replication.


Assuntos
DNA Viral/química , Transcriptase Reversa do HIV/metabolismo , HIV-1/genética , Mutação Puntual , Microscopia Crioeletrônica , DNA Viral/metabolismo , Transferência Ressonante de Energia de Fluorescência , Transcriptase Reversa do HIV/química , HIV-1/metabolismo , Modelos Moleculares , Conformação Molecular , Transcrição Reversa , Imagem Individual de Molécula
8.
Artigo em Inglês | MEDLINE | ID: mdl-31262948

RESUMO

Recent advances in structural biology methods have enabled a surge in the number of RNA and RNA-protein assembly structures available at atomic or near-atomic resolution. These complexes are often trapped in discrete conformational states that exist along a mechanistic pathway. Single-molecule fluorescence methods provide temporal resolution to elucidate the dynamic mechanisms of processes involving complex RNA and RNA-protein assemblies, but interpretation of such data often requires previous structural knowledge. Here we highlight how single-molecule tools can directly complement structural approaches for two processes--translation and reverse transcription-to provide a dynamic view of molecular function.


Assuntos
RNA/metabolismo , Imagem Individual de Molécula/métodos , Conformação de Ácido Nucleico , RNA/química
9.
Curr Opin Struct Biol ; 58: 233-240, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31213390

RESUMO

Fundamental biological processes are driven by diverse molecular machineries. In recent years, single-molecule fluorescence spectroscopy has matured as a unique tool in biology to study how structural dynamics of molecular complexes drive various biochemical reactions. In this review, we highlight underlying developments in single-molecule fluorescence methods that enable deep biological investigations. Recent progress in these methods points toward increasing complexity of measurements to capture biological processes in a living cell, where multiple processes often occur simultaneously and are mechanistically coupled.


Assuntos
Imagem Individual de Molécula/métodos , Espectrometria de Fluorescência/métodos , Humanos , Substâncias Macromoleculares/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-29891562

RESUMO

Single-molecule fluorescence methods have illuminated the dynamics of the translational machinery. Structural and bulk biochemical experiments have provided detailed atomic and global mechanistic views of translation, respectively. Single-molecule studies of translation have bridged these views by temporally connecting the conformational and compositional states defined from structural data within the mechanistic framework of translation produced from biochemical studies. Here, we discuss the context for applying different single-molecule fluorescence experiments, and present recent applications to studying prokaryotic and eukaryotic translation. We underscore the power of observing single translating ribosomes to delineate and sort complex mechanistic pathways during initiation and elongation, and discuss future applications of current and improved technologies.


Assuntos
Elongação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Ribossomos/metabolismo , Bactérias/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Fluorescência , Proteínas Fúngicas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Polirribossomos/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/química , Espectrometria de Fluorescência
11.
Nat Methods ; 15(11): 947-954, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377372

RESUMO

Increasingly, cryo-electron microscopy (cryo-EM) is used to determine the structures of RNA-protein assemblies, but nearly all maps determined with this method have biologically important regions where the local resolution does not permit RNA coordinate tracing. To address these omissions, we present de novo ribonucleoprotein modeling in real space through assembly of fragments together with experimental density in Rosetta (DRRAFTER). We show that DRRAFTER recovers near-native models for a diverse benchmark set of RNA-protein complexes including the spliceosome, mitochondrial ribosome, and CRISPR-Cas9-sgRNA complexes; rigorous blind tests include yeast U1 snRNP and spliceosomal P complex maps. Additionally, to aid in model interpretation, we present a method for reliable in situ estimation of DRRAFTER model accuracy. Finally, we apply DRRAFTER to recently determined maps of telomerase, the HIV-1 reverse transcriptase initiation complex, and the packaged MS2 genome, demonstrating the acceleration of accurate model building in challenging cases.


Assuntos
Biologia Computacional/métodos , Microscopia Crioeletrônica/métodos , Modelos Moleculares , RNA/ultraestrutura , Ribonucleoproteínas/ultraestrutura , Software , Algoritmos , Humanos , Conformação Proteica , RNA/metabolismo , Ribonucleoproteínas/metabolismo
12.
J Mol Biol ; 430(24): 5137-5150, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30201267

RESUMO

The initiation of reverse transcription in human immunodeficiency virus-1 is a key early step in the virus replication cycle. During this process, the viral enzyme reverse transcriptase (RT) copies the single-stranded viral RNA (vRNA) genome into double-stranded DNA using human tRNALys3 as a primer for initiation. The tRNA primer and vRNA genome contain several complementary sequences that are important for regulating reverse transcription initiation kinetics. Using single-molecule Förster resonance energy transfer spectroscopy, we demonstrate that the vRNA-tRNA initiation complex is conformationally heterogeneous and dynamic in the absence of RT. As shown previously, nucleic acid-RT interaction is characterized by rapid dissociation constants. We show that extension of the vRNA-tRNA primer binding site helix from 18 base pairs to 22 base pairs stabilizes RT binding to the complex and that the tRNA 5' end has a role in modulating RT binding. RT occupancy on the complex stabilizes helix 1 formation and reduces global structural heterogeneity. The stabilization of helix 1 upon RT binding may serve to destabilize helix 2, the first pause site for RT during initiation, during later steps of reverse transcription initiation.


Assuntos
Transcriptase Reversa do HIV/metabolismo , HIV-1/genética , RNA de Transferência/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Sítios de Ligação , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , HIV-1/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Estabilidade de RNA , Transcrição Reversa , Imagem Individual de Molécula
13.
Nature ; 557(7703): 118-122, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29695867

RESUMO

Reverse transcription of the HIV-1 RNA genome into double-stranded DNA is a central step in viral infection 1 and a common target of antiretroviral drugs 2 . The reaction is catalysed by viral reverse transcriptase (RT)3,4 that is packaged in an infectious virion with two copies of viral genomic RNA 5 each bound to host lysine 3 transfer RNA (tRNALys3), which acts as a primer for initiation of reverse transcription6,7. Upon viral entry into cells, initiation is slow and non-processive compared to elongation8,9. Despite extensive efforts, the structural basis of RT function during initiation has remained a mystery. Here we use cryo-electron microscopy to determine a three-dimensional structure of an HIV-1 RT initiation complex. In our structure, RT is in an inactive polymerase conformation with open fingers and thumb and with the nucleic acid primer-template complex shifted away from the active site. The primer binding site (PBS) helix formed between tRNALys3 and HIV-1 RNA lies in the cleft of RT and is extended by additional pairing interactions. The 5' end of the tRNA refolds and stacks on the PBS to create a long helical structure, while the remaining viral RNA forms two helical stems positioned above the RT active site, with a linker that connects these helices to the RNase H region of the PBS. Our results illustrate how RNA structure in the initiation complex alters RT conformation to decrease activity, highlighting a potential target for drug action.


Assuntos
Microscopia Crioeletrônica , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/ultraestrutura , HIV-1/enzimologia , Sequência de Bases , Domínio Catalítico , Transcriptase Reversa do HIV/metabolismo , Modelos Moleculares , Conformação Molecular , RNA de Transferência de Lisina/química , RNA de Transferência de Lisina/metabolismo , RNA de Transferência de Lisina/ultraestrutura , Transcrição Reversa , Ribonuclease H/química , Ribonuclease H/metabolismo , Ribonuclease H/ultraestrutura
14.
Q Rev Biophys ; 49: e11, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27658712

RESUMO

Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.

15.
RNA ; 22(11): 1689-1698, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27613581

RESUMO

Reverse transcription is a key process in the early steps of HIV infection. This process initiates within a specific complex formed by the 5' UTR of the HIV genomic RNA (vRNA) and a host primer tRNALys3 Using nuclear magnetic resonance (NMR) spectroscopy and single-molecule fluorescence spectroscopy, we detect two distinct conformers adopted by the tRNA/vRNA initiation complex. We directly show that an interaction between the conserved 8-nucleotide viral RNA primer activation signal (PAS) and the primer tRNA occurs in one of these conformers. This intermolecular PAS interaction likely induces strain on a vRNA intramolecular helix, which must be broken for reverse transcription to initiate. We propose a mechanism by which this vRNA/tRNA conformer relieves the kinetic block formed by the vRNA intramolecular helix to initiate reverse transcription.


Assuntos
HIV/genética , Conformação de Ácido Nucleico , RNA Viral/química , Transcrição Reversa , Sítio de Iniciação de Transcrição , Regiões 5' não Traduzidas , Transferência Ressonante de Energia de Fluorescência , Espectroscopia de Ressonância Magnética , RNA Viral/genética
16.
Proc Natl Acad Sci U S A ; 113(26): 7166-70, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27307442

RESUMO

Bioinformatic analysis of Escherichia coli proteomes revealed that all possible amino acid triplet sequences occur at their expected frequencies, with four exceptions. Two of the four underrepresented sequences (URSs) were shown to interfere with translation in vivo and in vitro. Enlarging the URS by a single amino acid resulted in increased translational inhibition. Single-molecule methods revealed stalling of translation at the entrance of the peptide exit tunnel of the ribosome, adjacent to ribosomal nucleotides A2062 and U2585. Interaction with these same ribosomal residues is involved in regulation of translation by longer, naturally occurring protein sequences. The E. coli exit tunnel has evidently evolved to minimize interaction with the exit tunnel and maximize the sequence diversity of the proteome, although allowing some interactions for regulatory purposes. Bioinformatic analysis of the human proteome revealed no underrepresented triplet sequences, possibly reflecting an absence of regulation by interaction with the exit tunnel.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Biossíntese de Proteínas , Proteoma/genética , Regiões não Traduzidas , Códon/genética , Códon/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteoma/química , Proteoma/metabolismo , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo
17.
Nat Methods ; 13(1): 59-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26619013

RESUMO

We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).


Assuntos
Cristalografia/métodos , Complexo de Proteína do Fotossistema II/metabolismo , Ribossomos/metabolismo , Modelos Moleculares
18.
Int J Cancer ; 134(10): 2269-77, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23784914

RESUMO

Arterial hypertension and cancer are two of the most important causes of mortality in the world; correlations between these two clinical entities are complex and various. Cancer therapy using old (e.g., mitotic spindle poisons) as well as new (e.g., monoclonal antibody) drugs may cause arterial hypertension through different mechanisms; sometimes the increase of blood pressure levels may be responsible for chemotherapy withdrawal. Among newer cancer therapies, drugs interacting with the VEGF (vascular endothelial growth factors) pathways are the most frequently involved in hypertension development. However, many retrospective studies have suggested a relationship between antihypertensive treatment and risk of cancer, raising vast public concern. The purposes of this brief review have then been to analyse the role of chemotherapy in the pathogenesis of hypertension, to summarize the general rules of arterial hypertension management in this field and finally to evaluate the effects of antihypertensive therapy on cancer disease.


Assuntos
Anti-Hipertensivos/uso terapêutico , Antineoplásicos/uso terapêutico , Hipertensão/tratamento farmacológico , Neoplasias/tratamento farmacológico , Anti-Hipertensivos/efeitos adversos , Antineoplásicos/efeitos adversos , Humanos , Hipertensão/induzido quimicamente , Neoplasias/induzido quimicamente , Medição de Risco , Fatores de Risco
19.
Methods Enzymol ; 530: 315-30, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24034329

RESUMO

Preparative polyacrylamide gel electrophoresis (PAGE) is a powerful tool for purifying RNA samples. Denaturing PAGE allows separation of nucleic acids that differ by a single nucleotide in length. It is commonly used to separate and purify RNA species after in vitro transcription, to purify naturally occurring RNA variants such as tRNAs, to remove degradation products, and to purify labeled RNA species. To preserve RNA integrity following purification, RNA is usually visualized by UV shadowing or stained with ethidium bromide or SYBR green dyes.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , RNA/isolamento & purificação , Benzotiazóis , Diaminas , Etídio/análise , Corantes Fluorescentes/análise , Compostos Orgânicos/análise , Quinolinas , RNA/análise
20.
Cell Rep ; 3(2): 497-508, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23416053

RESUMO

Inferring antibiotic mechanisms on translation through static structures has been challenging, as biological systems are highly dynamic. Dynamic single-molecule methods are also limited to few simultaneously measurable parameters. We have circumvented these limitations with a multifaceted approach to investigate three structurally distinct aminoglycosides that bind to the aminoacyl-transfer RNA site (A site) in the prokaryotic 30S ribosomal subunit: apramycin, paromomycin, and gentamicin. Using several single-molecule fluorescence measurements combined with structural and biochemical techniques, we observed distinct changes to translational dynamics for each aminoglycoside. While all three drugs effectively inhibit translation elongation, their actions are structurally and mechanistically distinct. Apramycin does not displace A1492 and A1493 at the decoding center, as demonstrated by a solution nuclear magnetic resonance structure, causing only limited miscoding; instead, it primarily blocks translocation. Paromomycin and gentamicin, which displace A1492 and A1493, cause significant miscoding, block intersubunit rotation, and inhibit translocation. Our results show the power of combined dynamics, structural, and biochemical approaches to elucidate the complex mechanisms underlying translation and its inhibition.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Transferência Ressonante de Energia de Fluorescência , Gentamicinas/farmacologia , Nebramicina/análogos & derivados , Nebramicina/farmacologia , Conformação de Ácido Nucleico , Paromomicina/farmacologia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...