Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34359709

RESUMO

Primary-Motor-Cortex (M1) hosts two functional components, at its posterior and anterior borders, being the first faster and more excitable. We developed a mapping-technique for M1 components identification and determined their functional cortical-subcortical architecture in M1 gliomas and the impact of their identification on tumor resection and motor performance. A novel advanced mapping technique was used in 102 tumors within M1 or CorticoSpinal-Tract to identify M1-two components. High-Frequency-stimulation (2-5 pulses) with an on-line qualitative and quantitative analysis of motor responses was used; the two components' cortical/subcortical spatial distribution correlated to clinical, tumor-related factor and patients' motor outcome; a cohort treated with standard-mapping was used for comparison. The two functional components were always identified on-line; in tumors not affecting M1, its functional segregation was preserved. In M1 tumors, two architectures, both preserving the two components, were disclosed: in 50%, a normal cortical/subcortical architecture emerged, while 50% revealed a distorted architecture with loss of anatomical reference and somatotopy, not associated with tumor histo-molecular features or volume, but with a previous treatment. Motor performance was maintained, suggesting functional compensation. By preserving the highest and resecting the lowest excitability component, the complete-resection increased with low morbidity. The real-time identification of two M1 functional components and the preservation of the highest excitability one increases safe resection, revealing M1 plasticity potentials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...