Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 466(3): 587-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23974966

RESUMO

Hypoxia induces a loss of skeletal muscle mass and alters myogenesis in vitro, but whether it affects muscle regeneration in vivo following injury remains to be elucidated. We hypothesized that hypoxia would impair the recovery of muscle mass during regeneration. To test this hypothesis, the soleus muscle of female rats was injured by notexin and allowed to recover for 3, 7, 14, and 28 days under normoxia or hypobaric hypoxia (5,500 m) conditions. Hypoxia impaired the formation and growth of new myofibers and enhanced the loss of muscle mass during the first 7 days of regeneration, but did not affect the final recovery of muscle mass at 28 days. The impaired regeneration under hypoxic conditions was associated with a blunted activation of mechanical target of rapamycin (mTOR) signaling as assessed by p70(S6K) and 4E-BP1 phosphorylation that was independent of Akt activation. The decrease in mTOR activity with hypoxia was consistent with the increase in AMP-activated protein kinase activity, but not related to the change in regulated in development and DNA response 1 protein content. Hypoxia increased the mRNA levels of the atrogene muscle ring finger-1 after 7 days of regeneration, though muscle atrophy F box transcript levels remained unchanged. The increase in MyoD and myogenin mRNA expression with regeneration was attenuated at 7 days with hypoxia. In conclusion, our results support the notion that the enhanced loss of muscle mass observed after 1 week of regeneration under hypoxic conditions could mainly result from the impaired formation and growth of new fibers resulting from a reduction in protein synthesis and satellite cell activity.


Assuntos
Hipóxia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Regeneração , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Transporte/metabolismo , Hipóxia Celular , Venenos Elapídicos/toxicidade , Feminino , Hipóxia/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Physiol Genomics ; 43(4): 228-35, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21156833

RESUMO

Quantifying target mRNA using real-time quantitative reverse transcription-polymerase chain reaction requires an accurate normalization method. Determination of normalization factors (NFs) based on validated reference genes according to their relative stability is currently the best standard method in most usual situations. This method controls for technical errors, but its physiological relevance requires constant NF values for a fixed weight of tissue. In the functional overload model, the increase in the total RNA concentration must be considered in determining the NF values. Here, we pointed out a limitation of the classical geNorm-derived normalization. geNorm software selected reference genes despite that the NF values extensively varied under experiment. Only the NF values calculated from four intentionally selected genes were constant between groups. However, a normalization based on these genes is questionable. Indeed, three out of four genes belong to the same functional class (negative regulator of muscle mass), and their use is physiological nonsense in a hypertrophic model. Thus, we proposed guidelines for optimizing target mRNA normalization and quantification, useful in models of muscle mass modulation. In our study, the normalization method by multiple reference genes was not appropriate to compare target mRNA levels between overloaded and control muscles. A solution should be to use an absolute quantification of target mRNAs per unit weight of tissue, without any internal normalization. Even if the technical variations will stay present as a part of the intergroup variations, leading to less statistical power, we consider this method acceptable because it will not generate misleading results.


Assuntos
Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Animais , Modelos Animais de Doenças , Feminino , Hipertrofia/genética , Músculo Esquelético/fisiopatologia , Tamanho do Órgão/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Padrões de Referência , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...