Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 13(1)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35076513

RESUMO

BACKGROUND: Currently, left ventricular assist devices (LVADs) are a successful surgical treatment for patients with end-stage heart failure on the waiting list or with contraindicated heart transplantation. In Russia, Sputnik 1 LVAD was also successfully introduced into clinical practice as a bridge-to-transplant and a destination therapy device. Development of Sputnik 2 LVAD was aimed at miniaturization to reduce invasiveness, optimize hemocompatibility, and improve versatility for patients of various sizes. METHODS: We compared hemolysis level in flow path of the Sputnik LVADs and investigated design aspects influencing other types of blood damage, using predictions of computational fluid dynamics (CFD) and experimental assessment. The investigated operating point was a flow rate of 5 L/min and a pressure head of 100 mm Hg at an impeller rotational speed of 9100 min-1. RESULTS: Mean hemolysis indices predicted with CFD were 0.0090% in the Sputnik 1 and 0.0023% in the Sputnik 2. Averaged values of normalized index of hemolysis obtained experimentally for the Sputnik 1 and the Sputnik 2 were 0.011 ± 0.003 g/100 L and 0.004 ± 0.002 g/100 L, respectively. CONCLUSIONS: Obtained results indicate obvious improvements in hemocompatibility and sufficiently satisfy the determined miniaturization aim for the Sputnik 2 LVAD development.

2.
Cardiol Res Pract ; 2019: 4593174, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885902

RESUMO

The need to simulate the operating conditions of the human body is a key factor in every study and engineering process of a bioengineering device developed for implantation. In the present paper, we describe in detail the interaction between the left ventricle (LV) and our Sputnik left ventricular assist devices (LVADs). This research aims to evaluate the influence of different rotary blood pumps (RBPs) on the LV depending on the degree of heart failure (HF), in order to investigate energetic characteristics of the LV-LVAD interaction and to estimate main parameters of left ventricular unloading. We investigate energetic characteristics of adult Sputnik 1 and Sputnik 2 LVADs connected to a hybrid adult mock circulation (HAMC) and also for the Sputnik pediatric rotary blood pump (PRBP) connected to a pediatric mock circulation (PMC). A major improvement of the LV unloading is observed during all simulations for each particular heart failure state when connected to the LVAD, with sequential pump speed increased within 5000-10000 rpm for adult LVADs and 6000-13000 rpm for PRBP with 200 rpm step. Additionally, it was found that depending on the degree of heart failure, LVADs influence the LV in different ways and a significant support level cannot be achieved without the aortic valve closure. Furthermore, this study expands the information on LV-LVAD interaction, which leads to the optimization of the RBP speed rate control in clinics for adult and pediatric patients suffering from heart failure. Finally, we show that the implementation of control algorithms using the modulation of the RBP speed in order to open the aortic valve and unload the LV more efficiently is necessary and will be content of further research.

3.
Artif Organs ; 42(4): 432-443, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29508416

RESUMO

In this work, the study results of an implantable pediatric rotary blood pump (PRBP) are presented. They show the results of the numerical simulation of fluid flow rates in the pump. The determination method of the backflows and stagnation regions is represented. The operating points corresponding to fluid flow rates of 1, 3, and 5 L/min for 75-80 mm Hg pressure head are investigated. The study results have shown that use of the pump in the 1 L/min operating point can potentially lead to the appearance of backflows and stagnation regions. In the case of using pumps in fluid flow rates ranging from 3 to 5 L/min, the number of stagnation regions decreases and the fluid flow rate changes marginally. Using the pump in this flow rate range is considered judicious. The study shows an increase in shear stress with an increase in fluid flow rates, while there is no increase in shear stress above the critical condition of 150 Pa (which does not allow us to reliably speak about the increased risk of blood cell damage). The aim of this work was to design, prototype, and study interaction of the Sputnik PRBP with the cardiovascular system. A three-dimensional model of Sputnik PRBP was designed with the following geometrical specifications: flow unit length of 51.5 mm, flow unit diameter of 10 mm, and spacing between the rotor and housing of 0.1 mm. Computational fluid dynamics studies were used to calculate head pressure-flow rate (H-Q) curves at rotor speeds ranging from 10 000 to 14 000 rpm (R2 = 0.866 between numerical simulation and experiment) and comparing flow patterns at various points of the flow rate operating range (1, 3, and 5 L/min) for operating pressures ranging from 75 to 80 mm Hg. It is noted that when fluid flow rate changes from 1 L/min to 3 L/min, significant changes are observed in the distribution of zero flow zones. At the inlet and outlet of the pump, when going to the operating point of 3 L/min, zones of stagnation become minuscule. The shear stress distribution was calculated along the pump volume. The volume in which shear stress exceed 150 Pa is less than 0.38% of the total pump volume at flow rates of 1, 3, and 5 L/min. In this study, a mock circulatory system (MCS) allowing simulation of physiological cardiovascular characteristics was used to investigate the interaction of the Sputnik PRBP with the cardiovascular system. MCS allows reproducing the Frank-Starling autoregulation mechanism of the heart. PRBP behavior was tested in the speed range of 6 000 to 15 000 rpm. Decreased contractility can be expressed in a stroke volume decrease approximately from 18 to 4 mL and ventricle systolic pressure decrease approximately from 92 to 20 mm Hg. The left ventricle becomes fully supported at a pump speed of 10 000 rpm. At a pump speed of 14 000 rpm, the left ventricle goes into a suction state in which fluid almost does not accumulate in the ventricle and only passes through it to the pump. The proposed PRBP showed potential for improved clinical outcomes in pediatric patients with a body surface area greater than 0.6 m2 and weight greater than 12 kg.


Assuntos
Desenho de Equipamento , Coração Auxiliar/efeitos adversos , Modelos Cardiovasculares , Estresse Mecânico , Velocidade do Fluxo Sanguíneo , Criança , Insuficiência Cardíaca/cirurgia , Hemólise , Humanos , Hidrodinâmica , Volume Sistólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...