Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 126(2): 403-412, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30543501

RESUMO

Quadriceps muscle weakness and wasting are common comorbidities in chronic obstructive pulmonary disease (COPD). Micro-RNA expression upregulation may favor muscle mass growth and differentiation. We hypothesized that the profile of muscle-enriched micro-RNAs in cultured myotubes differs between patients with COPD of a wide range of body composition and healthy controls and that expression levels of those micro-RNAs from patients with COPD and controls differ between in vivo and in vitro conditions. Twenty-nine patients with COPD [ n = 15 with muscle wasting and fat-free mass index (FFMI) 15 kg/m2 and n = 14 with normal body composition and FFMI 18 kg/m2] and 10 healthy controls (FFMI 19 kg/m2) were consecutively recruited. Biopsies from the vastus lateralis muscle were obtained in all study subjects. A fragment of each biopsy was used to obtain primary cultures, in which muscle cells were first proliferated to be then differentiated into actual myotubes. In both sets of experiments (in vivo biopsies and in vitro myotubes) the following muscle-enriched micro-RNAs from all the study subjects were analyzed using quantitative real-time PCR amplification: micro-RNA (miR)-1, miR-133a, miR-206, miR-486, miR-29b, miR-27a, and miR-181a. Whereas the expression of miR-1, miR-206, miR-486, and miR-29b was upregulated in the muscle biopsies of patients with COPD compared with those of healthy controls, levels of none of the studied micro-RNAs in the myotubes (primary cultured cells) significantly differed between patients with COPD and the controls. We conclude from these findings that environmental factors (blood flow, muscle metabolism, and inflammation) taking place in vivo (biopsies) in muscles may account for the differences observed in micro-RNA expression between patients with COPD and controls. In the myotubes, however, the expression of the same micro-RNAs did not differ between the study subjects as such environmental factors were not present. These findings suggest that therapeutic strategies should rather target environmental factors in COPD muscle wasting as the profile of micro-RNA expression in myotubes was similar in patients to that observed in the healthy controls. NEW & NOTEWORTHY Environmental factors taking place in vivo (biopsies) in the muscles may explain differences observed in micro-RNA expression between patients with chronic obstructive pulmonary disease (COPD) and controls. In the myotubes, however, the expression of the same micro-RNAs did not differ between the study subjects as such environmental factors were not present. These findings suggest that therapeutic strategies should rather target environmental factors in COPD muscle wasting and cachexia as micro-RNA expression profile in myotubes was similar between patients and controls.


Assuntos
Composição Corporal , Caquexia/genética , MicroRNAs/genética , Fibras Musculares Esqueléticas/metabolismo , Doença Pulmonar Obstrutiva Crônica/complicações , Músculo Quadríceps/metabolismo , Transcriptoma , Adiposidade , Idoso , Caquexia/etiologia , Caquexia/patologia , Caquexia/fisiopatologia , Estudos de Casos e Controles , Células Cultivadas , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/patologia , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Músculo Quadríceps/patologia , Músculo Quadríceps/fisiopatologia
2.
J Appl Physiol (1985) ; 125(2): 287-303, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29648516

RESUMO

Peripheral muscle weakness and mass loss are characteristic features in severe chronic obstructive pulmonary disease (COPD). We hypothesized that the phosphodiesterase (PDE)-4 inhibitor roflumilast-induced cAMP may ameliorate proteolysis and metabolism in skeletal muscles of COPD patients with severe muscle wasting. In myogenic precursor cells (isolated from muscle biopsies and cultured up to obtain differentiated myotubes) from 10 severe COPD patients and 10 healthy controls, which were treated with 1 µM roflumilast N-oxide (RNO) for three time cohorts (1, 6, and 24 h), genes of antioxidant defense and oxidative stress marker, myogenesis and muscle metabolism, proteolysis (tyrosine release assay) and ubiquitin-proteasome system markers, autophagy, and myosin isoforms were analyzed using RT-PCR and immunoblotting. In COPD patients at 6 h RNO treatment, myotube tyrosine release, total protein ubiquitination, and tripartite motif-containing protein 32 levels were significantly lower than healthy controls, whereas at 24 h RNO treatment, myotube myosin heavy chain ( MyHC) -I and MyHC-IIx expression levels were upregulated in both patients and controls. In the 6-h RNO cohort, in patients and controls, myotube expression of nuclear factor (erythroid-derived 2)-like 2 ( NRF2) and its downstream antioxidants sirtuin-1, FGF-inducible 14, and insulin-like growth factor-1 was upregulated, whereas that of myocyte-specific enhancer factor 2C, myogenic differentiation, myogenin, myostatin, atrogin-1, and muscle RING-finger protein-1 was downregulated. In myotubes of severe COPD patients with cachexia, roflumilast-induced cAMP signaling exerts beneficial effects by targeting muscle protein breakdown (tyrosine release), along with reduced expression of proteolytic markers of the ubiquitin-proteasome system and that of myostatin. In both patients and controls, roflumilast also favored antioxidant defense through upregulation of the NRF2 pathway and that of the histone deacetylase sirtuin-1, whereas it improved the expression of slow- and fast-twitch myosin isoforms. These findings show that muscle dysfunction and wasting may be targeted by roflumilast-induced cAMP signaling in COPD. These results have potential therapeutic implications, as this PDE-4 inhibitor is currently available for the treatment of systemic inflammation and exacerbations in patients with severe COPD. NEW & NOTEWORTHY In myotubes of cachectic chronic obstructive pulmonary disease (COPD) patients, cAMP signaling exerted beneficial effects by targeting muscle proteolysis and reducing gene expression of proteolytic markers of the ubiquitin-proteasome system and that of myostatin. In myotubes of patients and controls, roflumilast also favored antioxidant defense through upregulation of the nuclear factor (erythroid-derived 2)-like 2 pathway, of sirtuin-1, and of gene expression of slow- and fast-twitch isoforms. These findings have potential clinical implications for the treatment of muscle wasting in patients with COPD and cachexia.


Assuntos
Aminopiridinas/uso terapêutico , Benzamidas/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/uso terapêutico , Proteólise/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Ciclopropanos/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo
3.
J Cell Physiol ; 231(7): 1495-513, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26530247

RESUMO

Patients with chronic heart failure (CHF) experience exercise intolerance, fatigue and muscle wasting, which negatively influence their survival. We hypothesized that treatment with either the antioxidant N-acetyl cysteine (NAC) or the proteasome inhibitor bortezomib of rats with monocrotaline-induced CHF may restore inspiratory and limb muscle mass, function, and structure through several molecular mechanisms involved in protein breakdown and metabolism in the diaphragm and gastrocnemius. In these muscles of CHF-cachectic rats with and without treatment with NAC or bortezomib (N = 10/group) and non-cachectic controls, proteolysis (tyrosine release, proteasome activities, ubiquitin-proteasome markers), oxidative stress, inflammation, mitochondrial function, myosin, NF-κB transcriptional activity, muscle structural abnormalities, and fiber morphometry were analyzed together with muscle and cardiac functions. In diaphragm and gastrocnemius of CHF-cachectic rats, tyrosine release, proteasome activity, protein ubiquitination, atrogin-1, MURF-1, NF-κB activity, oxidative stress, inflammation, and structural abnormalities were increased, while muscle and cardiac functions, myosin content, slow- and fast-twitch fiber sizes, and mitochondrial activity were decreased. Concomitant treatment of CHF-cachectic rats with NAC or bortezomib improved protein catabolism, oxidative stress, inflammation, muscle fiber sizes, function and damage, superoxide dismutase and myosin levels, mitochondrial function (complex I, gastrocnemius), cardiac function and decreased NF-κB transcriptional activity in both muscles. Treatment of CHF-cachectic animals with NAC or bortezomib attenuated the functional (heart, muscles), biological, and structural alterations in muscles. Nonetheless, future studies conducted in actual clinical settings are warranted in order to assess the potential beneficial effects and safety concerns of these pharmacological agents on muscle mass loss and wasting in CHF-cachectic patients.


Assuntos
Acetilcisteína/administração & dosagem , Bortezomib/administração & dosagem , Insuficiência Cardíaca/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Diafragma/efeitos dos fármacos , Diafragma/metabolismo , Diafragma/patologia , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo , Humanos , Mitocôndrias/metabolismo , Monocrotalina/toxicidade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , NF-kappa B/metabolismo , Proteólise/efeitos dos fármacos , Ratos
4.
Clin Sci (Lond) ; 128(12): 905-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25628226

RESUMO

Epigenetic mechanisms regulate muscle mass and function in models of muscle dysfunction and atrophy. We assessed whether quadriceps muscle weakness and atrophy are associated with a differential expression profile of epigenetic events in patients with advanced COPD (chronic obstructive pulmonary disease). In vastus lateralis (VL) of sedentary severe COPD patients (n=41), who were further subdivided into those with (n=25) and without (n=16) muscle weakness and healthy controls (n=19), expression of muscle-enriched miRNAs, histone acetyltransferases (HATs) and deacetylases (HDACs), growth and atrophy signalling markers, total protein and histone acetylation, transcription factors, small ubiquitin-related modifier (SUMO) ligases and muscle structure were explored. All subjects were clinically evaluated. Compared with controls, in VL of all COPD together and in muscle-weakness patients, expression of miR-1, miR-206 and miR-27a, levels of lysine-acetylated proteins and histones and acetylated histone 3 were increased, whereas expression of HDAC3, HDAC4, sirtuin-1 (SIRT-1), IGF-1 (insulin-like growth factor-1) were decreased, Akt (v-akt murine thymoma viral oncogene homologue 1) expression did not differ, follistatin expression was greater, whereas myostatin expression was lower, serum reponse factor (SRF) expression was increased and fibre size of fast-twitch fibres was significantly reduced. In VL of severe COPD patients with muscle weakness and atrophy, epigenetic events regulate muscle differentiation rather than proliferation and muscle growth and atrophy signalling, probably as feedback mechanisms to prevent those muscles from undergoing further atrophy. Lysine-hyperacetylation of histones may drive enhanced protein catabolism in those muscles. These findings may help design novel therapeutic strategies (enhancers of miRNAs promoting myogenesis and acetylation inhibitors) to selectively target muscle weakness and atrophy in severe COPD.


Assuntos
Epigênese Genética , Debilidade Muscular/genética , Atrofia Muscular/genética , Doença Pulmonar Obstrutiva Crônica/genética , Músculo Quadríceps/fisiopatologia , Antropometria/métodos , Biomarcadores/metabolismo , Estudos de Casos e Controles , Humanos , Masculino , MicroRNAs/genética , Debilidade Muscular/etiologia , Debilidade Muscular/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/patologia , Músculo Quadríceps/patologia
5.
Free Radic Biol Med ; 79: 91-108, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25464271

RESUMO

Muscle dysfunction and wasting are predictors of mortality in advanced COPD and malignancies. Redox imbalance and enhanced protein catabolism are underlying mechanisms in COPD. We hypothesized that the expression profile of several biological markers share similarities in patients with cachexia associated with either COPD or lung cancer (LC). In vastus lateralis of cachectic patients with either LC (n=10) or advanced COPD (n=16) and healthy controls (n=10), markers of redox balance, inflammation, proteolysis, autophagy, signaling pathways, mitochondrial function, muscle structure, and sarcomere damage were measured using laboratory and light and electron microscopy techniques. Systemic redox balance and inflammation were also determined. All subjects were clinically evaluated. Compared to controls, in both cachectic groups of patients, a similar expression profile of different biological markers was observed in their muscles: increased levels of muscle protein oxidation and ubiquitination (p<0.05, both), which positively correlated (r=0.888), redox-sensitive signaling pathways (NF-κB and FoxO) were activated (p<0.05, all), fast-twitch fiber sizes were atrophied, muscle structural abnormalities and sarcomere disruptions were significantly greater (p<0.05, both). Structural and functional protein levels were lower in muscles of both cachectic patient groups than in controls (p<0.05, all). However, levels of autophagy markers including ultrastructural autophagosome counts were increased only in muscles of cachectic COPD patients (p<0.05). Systemic oxidative stress and inflammation levels were also increased in both patient groups compared to controls (p<0.005, both). Oxidative stress and redox-sensitive signaling pathways are likely to contribute to the etiology of muscle wasting and sarcomere disruption in patients with respiratory cachexia: LC and COPD.


Assuntos
Autofagia , Caquexia/metabolismo , Neoplasias Pulmonares/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Idoso , Estudos de Casos e Controles , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução
6.
PLoS One ; 9(11): e111514, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25369292

RESUMO

Epigenetic events are differentially expressed in the lungs and airways of patients with chronic obstructive pulmonary disease (COPD). Moreover, epigenetic mechanisms are involved in the skeletal (peripheral) muscle dysfunction of COPD patients. Whether epigenetic events may also regulate respiratory muscle dysfunction in COPD remains unknown. We hypothesized that epigenetic mechanisms would be differentially expressed in the main inspiratory muscle (diaphragm) of patients with COPD of a wide range of disease severity compared to healthy controls. In diaphragm muscle specimens (thoracotomy due to lung localized neoplasms) of sedentary patients with mild-to-moderate and severe COPD, with preserved body composition, and sedentary healthy controls, expression of muscle-enriched microRNAs, histone acetyltransferases (HATs) and deacetylases (HDACs), total DNA methylation and protein acetylation, small ubiquitin-related modifier (SUMO) ligases, muscle-specific transcription factors, and muscle structure were explored. All subjects were also clinically evaluated: lung and muscle functions and exercise capacity. Compared to healthy controls, patients exhibited moderate airflow limitation and diffusion capacity, and reduced exercise tolerance and transdiaphragmatic strength. Moreover, in the diaphragm of the COPD patients, muscle-specific microRNA expression was downregulated, while HDAC4 and myocyte enhancer factor (MEF)2C protein levels were higher, and DNA methylation levels, muscle fiber types and sizes did not differ between patients and controls. In the main respiratory muscle of COPD patients with a wide range of disease severity and normal body composition, muscle-specific microRNAs were downregulated, while HDAC4 and MEF2C levels were upregulated. It is likely that these epigenetic events act as biological adaptive mechanisms to better overcome the continuous inspiratory loads of the respiratory system in COPD. These findings may offer novel therapeutic strategies to specifically target respiratory muscle dysfunction in patients with COPD.


Assuntos
Diafragma/fisiopatologia , Epigênese Genética , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Idoso , Metilação de DNA , Diafragma/metabolismo , Diafragma/patologia , Feminino , Humanos , Masculino , MicroRNAs/análise , MicroRNAs/genética , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/patologia , Proteína SUMO-1/genética
7.
PLoS One ; 9(7): e102296, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25013984

RESUMO

Muscle dysfunction is a major comorbidity in Chronic Obstructive Pulmonary Disease (COPD). Several biological mechanisms including epigenetic events regulate muscle mass and function in models of muscle atrophy. Investigations conducted so far have focused on the elucidation of biological mechanisms involved in muscle dysfunction in advanced COPD. We assessed whether the epigenetic profile may be altered in the vastus lateralis of patients with mild COPD, normal body composition, and mildly impaired muscle function and exercise capacity. In vastus lateralis (VL) of mild COPD patients with well-preserved body composition and in healthy age-matched controls, expression of DNA methylation, muscle-enriched microRNAs, histone acetyltransferases (HTAs) and deacetylases (HDACs), protein acetylation, small ubiquitin-related modifier (SUMO) ligases, and muscle structure were explored. All subjects were clinically evaluated. Compared to healthy controls, in the VL of mild COPD patients, muscle function and exercise capacity were moderately reduced, DNA methylation levels did not differ, miR-1 expression levels were increased and positively correlated with both forced expiratory volume in one second (FEV1) and quadriceps force, HDAC4 protein levels were increased, and muscle fiber types and sizes were not different. Moderate skeletal muscle dysfunction is a relevant feature in patients with mild COPD and preserved body composition. Several epigenetic events are differentially expressed in the limb muscles of these patients, probably as an attempt to counterbalance the underlying mechanisms that alter muscle function and mass. The study of patients at early stages of their disease is of interest as they are a target for timely therapeutic interventions that may slow down the course of the disease and prevent the deleterious effects of major comorbidities.


Assuntos
Epigênese Genética , MicroRNAs/genética , Debilidade Muscular/genética , Doença Pulmonar Obstrutiva Crônica/genética , Músculo Quadríceps/metabolismo , Acetilação , Idoso , Composição Corporal , Estudos de Casos e Controles , Metilação de DNA , Volume Expiratório Forçado , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Debilidade Muscular/complicações , Debilidade Muscular/metabolismo , Debilidade Muscular/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Músculo Quadríceps/fisiopatologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Índice de Gravidade de Doença , Sumoilação
8.
Exp Physiol ; 98(9): 1349-65, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23625954

RESUMO

NEW FINDINGS: What is the central question of this study? We explored whether experimental cancer-induced cachexia may alter mitochondrial respiratory chain (MRC) complexes and oxygen uptake in respiratory and peripheral muscles,and whether signalling pathways, proteasome and oxidative stress influence that process. What is the main finding and what is its importance? In cancer cachectic mice, MRC complexes and oxygen consumption were decreased in the diaphragm and gastrocnemius. Blockade of nuclear factor-κB and mitogen-activated protein kinase actions partly restored the muscle mass and force and corrected the MRC dysfunction,while concomitantly reducing tumour burden. Antioxidants improved mitochondrial oxygen consumption without eliciting effects on the loss of muscle mass and force or the tumour size,whereas bortezomib reduced tumour burden without influencing muscle mass and strength or MRC function. Abnormalities in mitochondrial content, morphology and function have been reported in several muscle-wasting conditions. We specifically explored whether experimental cancer-induced cachexia may alter mitochondrial respiratory chain (MRC) complexes and oxygen uptake in respiratory and peripheral muscles, and whether signalling pathways, proteasomes and oxidative stress may influence that process. We evaluated complex I, II and IV enzyme activities (specific activity assays) and MRC oxygen consumption (polarographic measurements) in diaphragm and gastrocnemius of cachectic mice bearing the LP07 lung tumour, with and without treatment with N-acetylcysteine, bortezomib and nuclear factor-κB (sulfasalazine) and mitogen-activated protein kinases (MAPK, U0126) inhibitors (n = 10 per group for all groups). Whole-body and muscle weights and limb muscle force were also assessed in all rodents at baseline and after 1 month. Compared with control animals, cancer cachectic mice showed a significant reduction in body weight gain, smaller sizes of the diaphragm and gastrocnemius, lower muscle strength, decreased activity of complexes I, II and IV and decreased oxygen consumption in both muscles. Blockade of nuclear factor-κB and MAPK actions restored muscle mass and force and corrected the MRC dysfunction in both muscles, while partly reducing tumour burden. Antioxidants improved mitochondrial oxygen uptake without eliciting significant effects on the loss of muscle mass and force or tumour size, whereas the proteasome inhibitor reduced tumour burden without significantly influencing muscle mass and strength or mitochondrial function. In conclusion, nuclear factor-κB and MAPK signalling pathways modulate muscle mass and performance and MRC function of respiratory and limb muscles in this model of experimental cancer cachexia, thus offering targets for therapeutic intervention.


Assuntos
Caquexia/fisiopatologia , Diafragma/fisiopatologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Neoplasias Pulmonares/fisiopatologia , Doenças Mitocondriais/fisiopatologia , Músculo Esquelético/fisiopatologia , Acetilcisteína/uso terapêutico , Animais , Antioxidantes/uso terapêutico , Ácidos Borônicos/uso terapêutico , Bortezomib , Diafragma/patologia , Feminino , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Força Muscular , NF-kappa B/antagonistas & inibidores , NF-kappa B/uso terapêutico , Estresse Oxidativo , Pirazinas/uso terapêutico
9.
Eur Respir J ; 40(4): 851-62, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22408199

RESUMO

Oxidative stress may differentially regulate protein loss within peripheral muscles of severe chronic obstructive pulmonary disease (COPD) patients exhibiting different body composition. Oxidation levels of proteins, myosin heavy chain (MyHC) and myonuclei, superoxide anion, antioxidants, actin, creatine kinase, carbonic anhydrase-3, ubiquitin-proteasome system, redox-signalling pathways, inflammation and muscle structure, and damage were quantified in limb muscles of severe COPD patients with and without muscle wasting, and in sedentary controls. Compared with controls, in the quadriceps of muscle-wasted COPD patients, levels of protein carbonylation, oxidation of MyHC and myonuclei, superoxide anion production, superoxide dismutase, total protein ubiquinitation, E2(14k), atrogin-1, FoxO1 and p65 were higher, while content of MyHC, creatine kinase, carbonic anhydrase-3, myogenin, and fast-twitch fibre size were decreased. Importantly, in nonwasted COPD patients, where MyHC was more oxidised than in controls, its content was preserved. Muscle inflammation and glutathione levels did not differ between patients and controls. In all patients, muscle structure abnormalities were increased, while muscle force and exercise capacity were reduced. In severe COPD, while muscle oxidative stress increases regardless of their body composition, protein ubiquitination and loss of MyHC were enhanced only in patients exhibiting muscle atrophy. Oxidative stress does not seem to directly modulate muscle protein loss in these patients.


Assuntos
Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Estresse Oxidativo/fisiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Idoso , Estudos de Casos e Controles , Extremidades , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiopatologia , Atrofia Muscular/complicações , Atrofia Muscular/fisiopatologia , Oxirredução , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Músculo Quadríceps/metabolismo , Músculo Quadríceps/fisiopatologia
10.
Respir Physiol Neurobiol ; 182(1): 9-17, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22349133

RESUMO

Cigarette smoke (CS)-induced oxidative stress may cause muscle alterations in chronic conditions such as chronic obstructive pulmonary disease (COPD). We sought to explore in AKR/J mice exposed to CS for 6 months and in control animals, levels of protein oxidation, oxidized proteins (immunoblotting, proteomics) and antioxidant mechanisms in both respiratory and limb muscles, body weight modifications, systemic inflammation, and lung structure. Compared to control mice, CS-exposed animals exhibited a reduction in body weight gain at 3 months and thereafter, showed lung emphysema, and exhibited increased oxidative stress levels in their diaphragms and gastrocnemius at 6 months. Proteins involved in glycolysis, ATP production and distribution, carbon dioxide hydration, and muscle contraction were carbonylated in respiratory and limb muscles. Blood tumor necrosis factor (TNF)-alpha levels were significantly greater in CS-exposed mice than in control animals. In AKR/J mice, chronic exposure to CS induces lung emphysema concomitantly with greater oxidative modifications on muscle proteins in both respiratory and limb muscles, and systemic inflammation.


Assuntos
Proteínas Musculares/efeitos dos fármacos , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Enfisema Pulmonar/induzido quimicamente , Fumar/efeitos adversos , Animais , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos AKR , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Proteoma/efeitos dos fármacos , Proteoma/metabolismo , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Fumaça , Fator de Necrose Tumoral alfa/sangue
11.
Free Radic Biol Med ; 52(1): 88-94, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22064359

RESUMO

Beneficial effects of exercise training in patients with chronic obstructive pulmonary disease (COPD) are acknowledged. However, high-intensity exercise may enhance muscle oxidative stress in severe COPD patients. We hypothesized that high-intensity exercise training of long duration does not deteriorate muscle redox status. In the vastus lateralis and blood of 18 severe COPD patients and 12 controls, before and after an 8-week training program, protein oxidation and nitration, antioxidant systems, and inflammatory cytokines were examined. At baseline, COPD patients showed greater muscle oxidative stress and superoxide dismutase activity and circulating inflammatory cytokines than controls. Among COPD patients, muscle and blood protein carbonylation levels were correlated. Both groups showed training-induced increase in VO(2) peak and decreased blood lactate levels. After training, among the COPD patients, blood protein nitration levels were significantly reduced and muscle protein oxidation and nitration levels did not cause impairment. Muscle and blood levels of inflammatory cytokines were not modified by training in either patients or controls. We conclude that in severe COPD patients, high-intensity exercise training of long duration improves exercise capacity while preventing the enhancement of systemic and muscle oxidative stress. In addition, in these patients, resting protein oxidation levels correlate between skeletal muscle and blood compartments.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Idoso , Estudos de Casos e Controles , Catalase/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Feminino , Glutationa/sangue , Humanos , Inflamação/complicações , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Ácido Láctico/sangue , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Nitratos/sangue , Oxirredução , Estresse Oxidativo , Carbonilação Proteica , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Índice de Gravidade de Doença , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...