Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chronobiol Int ; 31(9): 1024-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25084069

RESUMO

Gilthead seabream is a fish species of great importance in Mediterranean aquaculture, attracting many studies on nutrition and chronobiology, although nothing is known about the effect of feeding frequency on the daily rhythms of the gastric digestion process. In this article, we investigated daily rhythms in stomach fullness, gastric and intestine pH, as well as pepsin activity and expression of pepsinogen and proton pump in juvenile fish under three different feeding protocols: (A) one daily meal at 9:00, (B) two daily meals at 9:00 and 17:00 and (C) continuous feeding during the daytime. The results revealed that feeding protocol affected significantly the rhythm of gastric pH and the pepsin activity pattern. The gastric pH exhibited significant daily rhythms in the three cases with the acrophase located at night in the regimes A and B and during daytime, in the regime C. In the regimes A and B, the pepsin activity peaked few hours after the meals, although the afternoon meal in B produced a higher peak. In the regime C, the peak occurred in the middle of the feeding period. Lowest total pepsin activity was observed in regime A, and the highest activity with the regime C. In contrast, the pepsinogen gene expression remained low along the daily cycle, with an expression peak just before or after the morning meal in regimes A and C, respectively. The proton pump gene expression was also practically constant with a peak right after the morning meal in the regime C. On the other hand, intestinal pH showed a postprandial increase after the first morning meal in all the three treatments, recovering the resting values in the dark period. Two meals and continuous feeding allowed a better and prolonged gastric digestion and consequently the juveniles exhibited better growth with the same daily ration of food. In short, while the gastric digestion pattern is mainly driven by pH changes induced by the time of food ingestion, the regulation of the intestinal digestion seems to be more independent of the feeding protocol.


Assuntos
Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Atividade Motora/fisiologia , Fotoperíodo , Dourada/fisiologia , Estômago/fisiologia , Animais , Comportamento Animal/fisiologia , Digestão , Fatores de Tempo
2.
Chronobiol Int ; 31(9): 1051-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25102424

RESUMO

Since fish show daily rhythms in most physiological functions, it should not be surprising that stressors may have different effects depending on the timing of exposure. In this study, we investigated the influence of time of day on the stress responses, at both physiological and cellular levels, in gilthead sea bream (Sparus aurata L.) submitted to air exposure for 30 s and then returned to their tank. One hour after air exposure, blood, hypothalamus and liver samples were taken. Six fish per experimental group (control and stressed) were sampled every 4 h during a 24-h cycle. Fish were fed in the middle of the light cycle (ML) and locomotor activity rhythms were recorded using infrared photocells to determine their daily activity pattern of behaviour, which showed a peak around feeding time in all fish. In the control group, cortisol levels did not show daily rhythmicity, whereas in the stressed fish, a daily rhythm of plasma cortisol was observed, being the average values higher than in the control group, with increased differences during the dark phase. Blood glucose showed daily rhythmicity in the control group but not in the stressed one which also showed higher values at all sampling points. In the hypothalamus of control fish, a daily rhythm of corticotropin-releasing hormone (crh) gene expression was observed, with the acrophase at the beginning of the light phase. However, in the stressed fish, this rhythm was abolished. The expression of crh-binding protein (crhbp) showed a peak at the end of the dark phase in the control group, whereas in the stressed sea bream, this peak was found at ML. Regarding hepatic gene expression of oxidative stress biomarkers: (i) cytochrome c oxidase 4 showed daily rhythmicity in both control and stressed fish, with the acrophases located around ML, (ii) peroxiredoxin (prdx) 3 and 5 (prdx5) only presented daily rhythmicity of expression in the stressed fish, with the acrophase located at the beginning of the light cycle and (iii) uncoupling protein 1 showed significant differences between sampling points only in the control group, with significantly higher expression at the beginning of the dark phase. Taken together, these results indicate that stress response in gilthead sea bream is time-dependent as cortisol level rose higher at night, and that different rhythmic mechanisms interplay in the control of neuroendocrine and cellular stress responses.


Assuntos
Ritmo Circadiano/fisiologia , Estresse Oxidativo , Fotoperíodo , Dourada/fisiologia , Estresse Fisiológico/fisiologia , Animais , Hormônio Liberador da Corticotropina/genética , Comportamento Alimentar/fisiologia , Luz , Atividade Motora/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...