Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 146(20)2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31540916

RESUMO

Morphogenesis is a shape-building process during development of multicellular organisms. During this process, the establishment and modulation of cell-cell contacts play an important role. Cadherins, the major cell adhesion molecules, form adherens junctions connecting epithelial cells. Numerous studies of Bilateria have shown that cadherins are associated with the regulation of cell differentiation, cell shape changes, cell migration and tissue morphogenesis. To date, the role of cadherins in non-bilaterians is unknown. Here, we study the expression and function of two paralogous classical cadherins, Cadherin 1 and Cadherin 3, in a diploblastic animal, the sea anemone Nematostella vectensis We show that a cadherin switch accompanies the formation of germ layers. Using specific antibodies, we show that both cadherins are localized to adherens junctions at apical and basal positions in ectoderm and endoderm. During gastrulation, partial epithelial-to-mesenchymal transition of endodermal cells is marked by stepwise downregulation of Cadherin 3 and upregulation of Cadherin 1. Knockdown experiments show that both cadherins are required for maintenance of tissue integrity and tissue morphogenesis. Thus, both sea anemones and bilaterians use independently duplicated cadherins combinatorially for tissue morphogenesis and germ layer differentiation.


Assuntos
Caderinas/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Anêmonas-do-Mar/embriologia , Anêmonas-do-Mar/metabolismo , Animais , Ectoderma/citologia , Ectoderma/metabolismo , Endoderma/citologia , Endoderma/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(24): 6231-6236, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29784822

RESUMO

Although the genetic regulation of cellular differentiation processes is well established, recent studies have revealed the role of mechanotransduction on a variety of biological processes, including regulation of gene expression. However, it remains unclear how universal and widespread mechanotransduction is in embryonic development of animals. Here, we investigate mechanosensitive gene expression during gastrulation of the starlet sea anemone Nematostella vectensis, a cnidarian model organism. We show that the blastoporal marker gene brachyury is down-regulated by blocking myosin II-dependent gastrulation movements. Brachyury expression can be restored by applying external mechanical force. Using CRISPR/Cas9 and morpholino antisense technology, we also show that mechanotransduction leading to brachyury expression is ß-catenin dependent, similar to recent findings in fish and Drosophila [Brunet T, et al. (2013) Nat Commun 4:1-15]. Finally, we demonstrate that prolonged application of mechanical stress on the embryo leads to ectopic brachyury expression. Thus, our data indicate that ß-catenin-dependent mechanotransduction is an ancient gene regulatory mechanism, which was present in the common ancestor of cnidarians and bilaterians, at least 600 million years ago.


Assuntos
Proteínas Fetais/metabolismo , Mecanotransdução Celular/fisiologia , Anêmonas-do-Mar/fisiologia , Proteínas com Domínio T/metabolismo , beta Catenina/metabolismo , Animais , Proteínas Fetais/genética , Gastrulação/fisiologia , Técnicas de Silenciamento de Genes , Microscopia , Miosina Tipo II/metabolismo , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo , Proteínas com Domínio T/genética , Regulação para Cima , beta Catenina/genética
3.
Proc Natl Acad Sci U S A ; 115(8): 1813-1818, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29440382

RESUMO

Robust morphogenetic events are pivotal for animal embryogenesis. However, comparison of the modes of development of different members of a phylum suggests that the spectrum of developmental trajectories accessible for a species might be far broader than can be concluded from the observation of normal development. Here, by using a combination of microsurgery and transgenic reporter gene expression, we show that, facing a new developmental context, the aggregates of dissociated embryonic cells of the sea anemone Nematostella vectensis take an alternative developmental trajectory. The self-organizing aggregates rely on Wnt signals produced by the cells of the original blastopore lip organizer to form body axes but employ morphogenetic events typical for normal development of distantly related cnidarians to re-establish the germ layers. The reaggregated cells show enormous plasticity including the capacity of the ectodermal cells to convert into endoderm. Our results suggest that new developmental trajectories may evolve relatively easily when highly plastic embryonic cells face new constraints.


Assuntos
Camadas Germinativas/citologia , Anêmonas-do-Mar/embriologia , Animais , Evolução Biológica , Agregação Celular , Ectoderma/citologia , Ectoderma/embriologia , Ectoderma/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Anêmonas-do-Mar/citologia , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo , Transdução de Sinais , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...