Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
RSC Adv ; 8(60): 34670-34681, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35548623

RESUMO

In-depth understanding of the thermal stability of polymer-clay nanocomposites requires the use of advanced time-resolved techniques combined with multivariate data analysis, as well as the preparation of layered nanofillers with well-defined composition. The layered double hydroxide (LDH) compounds Zn2Al(OH)6·nH2O, Zn2Al0.75Fe0.25(OH)6·nH2O, ZnCuAl(OH)6·nH2O, and ZnCuAl0.5Fe0.5(OH)6·nH2O were prepared, each designed to specifically identify the physical barrier, radical trapping, and char formation contributions to the thermal stability of the PMMA-LDH nanocomposites. The unique combination of conventional methods (TG, DSC, and Raman spectroscopy) and synchrotron radiation techniques (XAS and WAXS), applied during PMMA-LDH heating, revealed the synergetic (of iron) and antagonist (of copper) effects of the LDH layers transformations on the three main endothermic steps of mass loss of the polymer. The diffusion barrier effect was proved by the downshift of the PMMA thermal decomposition temperature caused by the decrease of the LDH edifice thermostability when divalent cations were substituted in the LDH (passing from PMMA-Zn2Al(OH)6·nH2O to PMMA-ZnCuAl(OH)6·nH2O). For PMMA-Zn2Al0.75Fe0.25(OH)6·nH2O, a cooperative contribution of iron reduction, stabilisation of layered edifice, and radical trapping effects was observed for the thermal stability of the nanocomposite. LDH also acted as a diffusion barrier to the efflux and evaporation of depolymerized species, favouring the charring which exerts an additional contribution to thermal stability of the PMMA-LDH nanocomposites.

2.
Colloids Surf B Biointerfaces ; 101: 156-61, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22796786

RESUMO

The objectives of this work were to study the suitability and highlight the advantages of the use of cross-linked ureasil-polyether hybrid matrices as film-forming systems. The results revealed that ureasil-polyethers are excellent film-forming systems due to specific properties, such as their biocompatibility, their cosmetic attractiveness for being able to form thin and transparent films, their short drying time to form films and their excellent bioadhesion compared to the commercial products known as strong adhesives. Rheological measurements have demonstrated the ability of these hybrid matrices to form a film in only a few seconds and Water Vapor Transmitting Rate (WVTR) showed adequate semi-occlusive properties suggesting that these films could be used as skin and wound protectors. Both the high skin bioadhesion and non-cytotoxic character seems to be improved by the presence of multiple amine groups in the hybrid molecules.


Assuntos
Concentração de Íons de Hidrogênio , Polietilenoglicóis , Propilenoglicóis , Ureia/análogos & derivados , Adesividade , Animais , Materiais Biocompatíveis , Catálise , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas , Sistemas de Liberação de Medicamentos , Indústria Farmacêutica , Géis , Permeabilidade , Reologia , Suínos , Água/química , Perda Insensível de Água
3.
J Phys Chem B ; 112(30): 9006-12, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18593152

RESUMO

A thermostimulated sol-gel transition in a system prepared by mixing a ZrOCl(2) acidified solution to a hot H(2)SO(4) aqueous solution was studied by dynamic rheological measurements and quasi-elastic light scattering. The effect of temperature and of molar ratio R(S) = [Zr]/[SO(4)] on the gelation kinetics was analyzed using the mass fractal aggregate growth model. This study shows that the linear growth of aggregates occurs at the early period of transformation, while bidimensional growth occurs at the advanced stage. The bidimensional growth can be shifted toward monodimensional growth by decreasing the aggregation rate by controlling the temperature and/or molar ratio R(S). EXAFS and Raman results gave evidence that the linear chain growth is supported by covalent sulfate bonding between primary building blocks. At the advanced stage of aggregation, the assembly of linear chains through hydrogen bonding gave rise to the growth of bidimensional particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...