Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(6): 2211-2220, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332824

RESUMO

We detail the relative role of ancillary ligand electron-donating ability in comparison to the locus of oxidation (either metal or ligand) on the electrophilic reactivity of a series of oxidized Mn salen nitride complexes. The electron-donating ability of the ancillary salen ligand was tuned via the para-phenolate substituent (R = CF3, H, tBu, OiPr, NMe2, NEt2) in order to have minimal effect on the geometry at the metal center. Through a suite of experimental (electrochemistry, electron paramagnetic resonance spectroscopy, UV-vis-NIR spectroscopy) and theoretical (density functional theory) techniques, we have demonstrated that metal-based oxidation to [MnVI(SalR)N]+ occurs for R = CF3, H, tBu, OiPr, while ligand radical formation to [MnV(SalR)N]+˙ occurs with the more electron-donating substituents R = NMe2, NEt2. We next investigated the reactivity of the electrophilic nitride with triarylphosphines to form a MnIV phosphoraneiminato adduct and determined that the rate of reaction decreases as the electron-donating ability of the salen para-phenolate substituent is increased. Using a Hammett plot, we find a break in the Hammett relation between R = OiPr and R = NMe2, without a change in mechanism, consistent with the locus of oxidation exhibiting a dominant effect on nitride reactivity, and not the overall donating ability of the ancillary salen ligand. This work differentiates between the subtle and interconnected effects of ancillary ligand electron-donating ability, and locus of oxidation, on electrophilic nitride reactivity.

2.
Colloid Polym Sci ; 299(7): 1173-1188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720334

RESUMO

Several difunctional oligomers were synthesized by functionalizing perfluoropolyalkylether (PFPAE) chains with different vinyl ethers and epoxides end-groups. Due to their innate synthetic challenges and demanding purification protocols, the PFPAE derivatives were obtained in low yield and with an average functionality lower than 2. However, the functionalized PFPAE oligomers were successful in being used in photo-induced cationic polymerization processes, obtaining transparent and soft films. The influences of the fluorinated chains, and various end-groups on the photopolymerization process were investigated, as well their chemical stability, thermal degradation, and surface properties. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00396-021-04838-1.

3.
J Org Chem ; 85(20): 13298-13305, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32924485

RESUMO

Difluorobenzodioxole is an important functional group found in both pharmaceuticals and agrochemicals. The late-stage introduction of this functional group is challenged by typical fluorination conditions of HF and strong oxidants. Here, we demonstrate that a range of difluorobenzodioxoles can be prepared from catechols in two steps through conversion into thionobenzodioxoles, followed by desulfurative fluorination with silver(I) fluoride. These mild reaction conditions are compatible with a variety of functional groups and enable access to a range of functionalized difluorobenzodioxoles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...