Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(2): 377-380, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030610

RESUMO

There have been several demonstrations of single-frequency single-mode ytterbium-doped fiber lasers operating at a few hundred watts of power. A narrow spectral linewidth of these lasers is critical for many applications but has never been properly measured before at high powers. In this work, we report the first spectral linewidth measurement at kHz resolution of high-power single-frequency fiber lasers using a heterodyne technique and can confirm that these lasers can indeed operate at a few kHz spectral linewidth. Furthermore, we have improved the power from single-frequency single-mode all-solid photonic bandgap fiber lasers to 500 W using an improved photonic bandgap fiber.

2.
Opt Lett ; 46(18): 4458-4461, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525021

RESUMO

Further power scaling of narrow-linewidth fiber lasers is critical for beam combining. Using all-solid photonic bandgap fibers with large effective mode areas and strong higher-order-mode suppression is an interesting approach. Previously, we demonstrated ∼400W single-frequency single-mode power at 1064 nm from a 50/400 photonic bandgap fiber amplifier, limited only by transverse mode instability (TMI). In this work, we demonstrate a TMI-limited single-mode power of 1.37 kW from a monolithic fiber amplifier with a 25/400 photonic bandgap fiber, the highest output power from a photonic bandgap fiber demonstrated to date, to the best of our knowledge. The spectral linewidth is broadened to ∼8GHz to suppress stimulated Brillouin scattering.

3.
Opt Lett ; 40(10): 2297-300, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26393723

RESUMO

An ytterbium-doped large-mode area photonic bandgap fiber is used to demonstrate 400 W of single-frequency output at 1064 nm with excellent beam quality and minimal stimulated Brillouin scattering. The fiber possesses all-solid microstructures embedded in the cladding and a core composed of phosphosilicate with a diameter of ∼50 µm. As the signal power is pushed beyond 450 W, there is degradation in the beam quality due to the modal instability. We briefly discuss techniques to alleviate this problem in future designs. To the best of our knowledge, the 400-W single-frequency near diffraction-limited output far exceeds the current state-of-the-art from such type of fiber amplifier.

4.
Opt Express ; 23(4): 4307-12, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836467

RESUMO

We demonstrate an Yb-doped polarizing all-solid photonic bandgap fiber for single-polarization and single-mode operation with an effective mode area of ~1150µm(2), a record for all-solid photonic bandgap fibers. The differential polarization mode loss is measured to be >5dB/m over the entire transmission band with a 160nm bandwidth and >15dB/m on the short wavelength edge of the band. A 2.6m long fiber was tested in a laser configuration producing a linearly polarized laser output with a PER value of 21dB without any polarizer, the highest for any fiber lasers based on polarizing fibers.

5.
Opt Lett ; 39(3): 666-9, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487894

RESUMO

An acoustic- and gain-tailored Yb-doped polarization-maintaining photonic crystal fiber is used to demonstrate 811 W single-frequency output power with near diffraction-limited beam quality. The fiber core is composed of 7 individually doped segments arranged to create three distinct transverse acoustic regions; including one region that is Yb-free. The utility of the Yb-free region is to reduce coupling between the LP01 and LP11 modes to mitigate the modal instability. The application of thermal gradients is utilized in conjunction with the transverse acoustic tailoring to suppress stimulated Brillouin scattering. To the best of our knowledge, the 811 W output represents the highest power ever reported from a near diffraction-limited single-frequency fiber laser.

6.
Opt Lett ; 37(18): 3741-3, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23041844

RESUMO

We demonstrate coherent beam combining using a two-dimensionally patterned diffractive optic combining element. Fifteen Yb-doped fiber amplifier beams arranged in a 3×5 array were combined into a single 600 W, M²=1.1 output beam with 68% combining efficiency. Combining losses under thermally stable conditions at 485 W were found to be dominated by spatial mode-mismatch between the free space input beams, in quantitative agreement with calculations using the measured amplitude and phase profiles of the input beams.

7.
Opt Express ; 18(13): 13547-53, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20588486

RESUMO

Four actively phase-locked beams produced by fiber amplifiers in a master oscillator power amplifier (MOPA) configuration were coherently combined in a glass capillary re-imaging waveguide producing more than 100 W of coherent output with 80% combining efficiency and excellent beam quality. The beam combiner components maintained a temperature below 30 degrees C with no external cooling at >100 W of combined power.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Tecnologia de Fibra Óptica/métodos , Lasers , Luz , Fibras Ópticas , Desenho de Equipamento , Temperatura Alta , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...