Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(16): 6088-6094, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665532

RESUMO

The assembly of semiconductors as light absorbers and enzymes as redox catalysts offers a promising approach for sustainable chemical synthesis driven by light. However, achieving the rational design of such semi-artificial systems requires a comprehensive understanding of the abiotic-biotic interface, which poses significant challenges. In this study, we demonstrate an electrostatic interaction strategy to interface negatively charged cyanamide modified graphitic carbon nitride (NCNCNX) with an [FeFe]-hydrogenase possessing a positive surface charge around the distal FeS cluster responsible for electron uptake into the enzyme. The strong electrostatic attraction enables efficient solar hydrogen (H2) production via direct interfacial electron transfer (DET), achieving a turnover frequency (TOF) of 18 669 h-1 (4 h) and a turnover number (TON) of 198 125 (24 h). Interfacial characterizations, including quartz crystal microbalance (QCM), photoelectrochemical impedance spectroscopy (PEIS), intensity-modulated photovoltage spectroscopy (IMVS), and transient photocurrent spectroscopy (TPC) have been conducted on the semi-artificial carbon nitride-enzyme system to provide a comprehensive understanding for the future development of photocatalytic hybrid assemblies.

2.
Angew Chem Int Ed Engl ; 61(50): e202211587, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224107

RESUMO

Carbon nitride (CNx ) is a light-absorber with excellent performance in photocatalytic suspension systems, but the activity of CNx photoelectrodes has remained low. Here, cyanamide-functionalized CNx (NCN CNx ) was co-deposited with ITO nanoparticles on a 1.8 Šthick alumina-coated FTO electrode. Transient absorption spectroscopy and impedance measurements support that ITO acts as a conductive binder and improves electron extraction from the NCN CNx , whilst the alumina underlayer reduces recombination losses between the ITO and the FTO glass. The Al2 O3 |ITO : NCN CNx film displays a benchmark performance for CNx -based photoanodes with an onset of -0.4 V vs a reversible hydrogen electrode (RHE), and 1.4±0.2 mA cm-2 at 1.23 V vs RHE during AM1.5G irradiation for the selective oxidation of 4-methylbenzyl alcohol. This assembly strategy will improve the exploration of CNx in fundamental and applied photoelectrochemical (PEC) studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...