Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894035

RESUMO

Honeycomb sandwich panels are utilized in many industrial applications due to their high bending resistance relative to their weight. Defects between the core and the facesheet compromise their integrity and efficiency due to the inability to transfer loads. The material system studied in the present paper is a unidirectional carbon fiber composite facesheet with a honeycomb core with a variety of defects at the interface between the two material systems. Current nondestructive techniques focus on defect detectability, whereas the presented method uses high-frequency ultrasound testing (UT) to detect and quantify the defect geometry and defect type. Testing is performed using two approaches, a laboratory scale immersion tank and a novel portable UT system, both of which utilize only single-side access to the part. Coupons are presented with defects spanning from 5 to 40 mm in diameter, whereas defects in the range of 15-25 mm and smaller are considered below the detectability limits of existing inspection methods. Defect types studied include missing adhesive, unintentional foreign objects that occur during the manufacturing process, damaged core, and removed core sections. An algorithm is presented to quantify the defect perimeter. The provided results demonstrate successful defect detection, with an average defect diameter error of 0.6 mm across all coupons studied in the immersion system and 1.1 mm for the portable system. The best accuracy comes from the missing adhesive coupons, with an average error of 0.3 mm. Conversely, the worst results come from the missing or damaged honeycomb coupons, with an error average of 0.7 mm, well below the standard detectability levels of 15-25 mm.

2.
Materials (Basel) ; 17(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38793448

RESUMO

Carbon fiber laminates have become popular in the manufacturing industry for their many desirable properties, like good vibration damping, high strength-to-weight ratio, toughness, high dimensional stability, and low coefficient of thermal expansion. During the manufacturing process, undesirable foreign objects, such as peel-ply strips, gloving material, and Kapton film, can be introduced into the part which can lead to a localized weakness. These manufacturing defects can function as stress concentration points and oftentimes cause a premature catastrophic failure. In this study, a method using high-resolution pulse-echo ultrasound testing is employed for the detection and quantification of the dimensions of foreign object debris (FOD) embedded within carbon fiber laminates. This research presents a method to create high-resolution C-scans using an out of immersion tank portable housing ultrasound scanning system, with similar capabilities to that of a full immersion system. From the full-waveform dataset, we extract the FOD depth and planar dimensions with an automatic edge detection technique. Results from several carbon fiber laminates are investigated with embedded foreign objects that are often considered undetectable. Results are presented for FOD identification for two different shapes: circles with diameters ranging from 7.62 mm to 12.7 mm, and 3-4-5 triangles with hypotenuses ranging from 7.6 mm to 12.7 mm. CT imaging is used to confirm proper FOD placement and that the FOD was not damaged or altered during manufacturing. Of importance for the ultrasound inspection results, in every single case studied, the FOD is detected, the layer depth is properly identified, and the typical error is less than 1.5 mm for the primary dimension.

3.
Polymers (Basel) ; 12(6)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570766

RESUMO

The purpose of this research is to predict the material performance of large format foamed core composite structures, such as crossties or structural timbers, using only constitutive properties. These structures are fabricated from recycled post-consumer/post-industrial waste composed of High-Density Polyethylene (HDPE) and Glass Filled Polypropylene (GFPP). A technical challenge in predicting the final part performance is the mathematical correlation between the microstructural variations and the macroscopic responses as a function of fiber aspect ratio, cell density, and constitutive properties of the polymer blend. The structures investigated have a dense and consolidated outer shell and a closed cell foamed core. The non-linear shell and the foamed core material properties are analyzed with micromechanics models, and the reference stress of the shell and core is predicted using a modified Rule of Mixtures model. The predicted properties are used as the inputs for a Finite Element Analysis (FEA) model, and the computational results are compared to experimental four-point bend test results for sixteen samples performed on a 120-kip compression stage. The results show that the mean of the characterized deflections from the four-point bend tests did not show any variations for an isotropic and transversely isotropic model using a linear analysis. This model was then extended to a non-linear analysis using the Ramberg-Osgood model to predict the full crosstie four-point bend test behavior. The FEA model results show a deviation of 2.45 kN compared to the experimental variation of 3.58 kN between the samples measured.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...