Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 192: 106431, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331351

RESUMO

Mutations of the human TRAFFICKING PROTEIN PARTICLE COMPLEX SUBUNIT 9 (TRAPPC9) cause a neurodevelopmental disorder characterised by microcephaly and intellectual disability. Trappc9 constitutes a subunit specific to the intracellular membrane-associated TrappII complex. The TrappII complex interacts with Rab11 and Rab18, the latter being specifically associated with lipid droplets (LDs). Here we used non-invasive imaging to characterise Trappc9 knock-out (KO) mice as a model of the human hereditary disorder. KOs developed postnatal microcephaly with many grey and white matter regions being affected. In vivo magnetic resonance imaging (MRI) identified a disproportionately stronger volume reduction in the hippocampus, which was associated with a significant loss of Sox2-positive neural stem and progenitor cells. Diffusion tensor imaging indicated a reduced organisation or integrity of white matter areas. Trappc9 KOs displayed behavioural abnormalities in several tests related to exploration, learning and memory. Trappc9-deficient primary hippocampal neurons accumulated a larger LD volume per cell following Oleic Acid stimulation, and the coating of LDs by Perilipin-2 was much reduced. Additionally, Trappc9 KOs developed obesity, which was significantly more severe in females than in males. Our findings indicate that, beyond previously reported Rab11-related vesicle transport defects, dysfunctions in LD homeostasis might contribute to the neurobiological symptoms of Trappc9 deficiency.


Assuntos
Microcefalia , Animais , Feminino , Humanos , Masculino , Camundongos , Imagem de Tensor de Difusão , Gotículas Lipídicas , Camundongos Knockout , Microcefalia/genética , Microcefalia/metabolismo , Neurônios/metabolismo
2.
Front Cell Dev Biol ; 10: 1022422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313557

RESUMO

Genomic imprinting is an epigenetic process through which genes are expressed in a parent-of-origin specific manner resulting in mono-allelic or strongly biased expression of one allele. For some genes, imprinted expression may be tissue-specific and reliant on CTCF-influenced enhancer-promoter interactions. The Peg13 imprinting cluster is associated with neurodevelopmental disorders and comprises canonical imprinted genes, which are conserved between mouse and human, as well as brain-specific imprinted genes in mouse. The latter consist of Trappc9, Chrac1 and Ago2, which have a maternal allelic expression bias of ∼75% in brain. Findings of such allelic expression biases on the tissue level raise the question of how they are reflected in individual cells and whether there is variability and mosaicism in allelic expression between individual cells of the tissue. Here we show that Trappc9 and Ago2 are not imprinted in hippocampus-derived neural stem cells (neurospheres), while Peg13 retains its strong bias of paternal allele expression. Upon analysis of single neural stem cells and in vitro differentiated neurons, we find not uniform, but variable states of allelic expression, especially for Trappc9 and Ago2. These ranged from mono-allelic paternal to equal bi-allelic to mono-allelic maternal, including biased bi-allelic transcriptional states. Even Peg13 expression deviated from its expected paternal allele bias in a small number of cells. Although the cell populations consisted of a mosaic of cells with different allelic expression states, as a whole they reflected bulk tissue data. Furthermore, in an attempt to identify potential brain-specific regulatory elements across the Trappc9 locus, we demonstrate tissue-specific and general silencer activities, which might contribute to the regulation of its imprinted expression bias.

3.
Curr Opin Biotechnol ; 71: 18-24, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34058525

RESUMO

HEK293 cell lines are used for the production of recombinant proteins, virus-like particles and viral vectors. Recent work has generated molecular (systems level) characterisation of HEK293 variants that has enabled re-engineering of the cells towards enhanced use for manufacture-scale production of recombinant biopharmaceuticals (assessment of 'safe harbours' for gene insertion, engineering of new variants for stable, amplifiable expression). In parallel, there have been notable advances in the bioprocessing conditions (suspension adaptation, development of defined serum-free media) that offer the potential for large-scale manufacture, a feature especially important in the drive to produce viral vectors at large-scale and at commercially viable costs for gene therapy. The combination of cell-based and bioprocess-based modification of existing HEK293 cell processes, frequently informed by understandings transferred from developments with Chinese hamster ovary cell lines, seems destined to place the HEK293 cell systems firmly as a critical platform for production of future biologically based therapeutics.


Assuntos
Vetores Genéticos , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Proteínas Recombinantes/genética
4.
Mol Brain ; 9: 39, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27080240

RESUMO

BACKGROUND: Neuronal and glial differentiation in the murine hypothalamus is not complete at birth, but continues over the first two weeks postnatally. Nutritional status and Leptin deficiency can influence the maturation of neuronal projections and glial patterns, and hypothalamic gliosis occurs in mouse models of obesity. Gnasxl constitutes an alternative transcript of the genomically imprinted Gnas locus and encodes a variant of the signalling protein Gαs, termed XLαs, which is expressed in defined areas of the hypothalamus. Gnasxl-deficient mice show postnatal growth retardation and undernutrition, while surviving adults remain lean and hypermetabolic with increased sympathetic nervous system (SNS) activity. Effects of this knock-out on the hypothalamic neural network have not yet been investigated. RESULTS: RNAseq analysis for gene expression changes in hypothalami of Gnasxl-deficient mice indicated Glial fibrillary acid protein (Gfap) expression to be significantly down-regulated in adult samples. Histological analysis confirmed a reduction in Gfap-positive glial cell numbers specifically in the hypothalamus. This reduction was observed in adult tissue samples, whereas no difference was found in hypothalami of postnatal stages, indicating an adaptation in adult Gnasxl-deficient mice to their earlier growth phenotype and hypermetabolism. Especially noticeable was a loss of many Gfap-positive α-tanycytes and their processes, which form part of the ependymal layer that lines the medial and dorsal regions of the 3(rd) ventricle, while ß-tanycytes along the median eminence (ME) and infundibular recesses appeared unaffected. This was accompanied by local reductions in Vimentin and Nestin expression. Hypothalamic RNA levels of glial solute transporters were unchanged, indicating a potential compensatory up-regulation in the remaining astrocytes and tanycytes. CONCLUSION: Gnasxl deficiency does not directly affect glial development in the hypothalamus, since it is expressed in neurons, and Gfap-positive astrocytes and tanycytes appear normal during early postnatal stages. The loss of Gfap-expressing cells in adult hypothalami appears to be a consequence of the postnatal undernutrition, hypoglycaemia and continued hypermetabolism and leanness of Gnasxl-deficient mice, which contrasts with gliosis observed in obese mouse models. Since α-tanycytes also function as adult neural progenitor cells, these findings might indicate further developmental abnormalities in hypothalamic formations of Gnasxl-deficient mice, potentially including neuronal composition and projections.


Assuntos
Células Ependimogliais/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Hipotálamo/metabolismo , Neuroglia/metabolismo , Magreza/metabolismo , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Contagem de Células , Cromograninas , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/deficiência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Loci Gênicos , Camundongos , Nestina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Núcleo Supraquiasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...