Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Space Res (Amst) ; 39: 26-42, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945086

RESUMO

The Light Ion Detector for ALTEA (LIDAL) is a new instrument designed to measure flux, energy spectra and Time of Flight of ions in a space habitat. It was installed in the International Space Station (Columbus) on January 19, 2020 and it is still operating. This paper presents the results of LIDAL measurements in the first 17 months of operation (01/2020-05/2022). Particle flux, dose rate, Time of Flight and spectra are presented and studied in the three ISS orthogonal directions and in the different geomagnetic regions (high latitude, low latitude, and South Atlantic Anomaly, SAA). The results are consistent with previous measurements. Dose rates range between 1.8 nGy/s and 2.4 nGy/s, flux between 0.21 particles/(sr cm2 s) and 0.32 particles/(sr cm2 s) as measured across time and directions during the full orbit. These data offer insights concerning the radiation measurements in the ISS and demonstrate the capabilities of LIDAL as a unique tool for the measurement of space radiation in space habitats, also providing novel information relevant to assess radiation risks for astronauts.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Voo Espacial , Astronave , Atividade Solar , Monitoramento de Radiação/métodos , Doses de Radiação , Íons
2.
Phys Med Biol ; 65(15): 155002, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32197258

RESUMO

Carbon-ion beams are increasingly used in the clinical practice for external radiotherapy treatments of deep-seated tumors. At therapeutic energies, carbon ions yield significant secondary products, including neutrons, which may be of concern for the radiation protection of the patient and personnel. We simulated the neutron yield produced by proton and carbon-ion pencil beams impinging on a clinical phantom at three different angles: 15°, 45° and 90°, with respect to the beam axis. We validated the simulated results using the measured response of organic scintillation detectors. We compared the results obtained with FLUKA 2011.2 and MCNPX 2.7.0 based on three different physics models: Bertini, Isabel, and CEM. Over the different ions, energies, and angles, the FLUKA simulation results agree better with the measured data, compared to the MCNPX results. Simulations of carbon ions at low angles exhibit both the highest deviation from measured data and inter-model discrepancy, which is probably due to the different treatment of the pre-equilibrium stage. The reported neutron yield results could help in the comparison of carbon-ion and proton treatments in terms of secondary neutron production for radiation protection applications.


Assuntos
Radioterapia com Íons Pesados , Nêutrons , Método de Monte Carlo , Imagens de Fantasmas , Terapia com Prótons , Proteção Radiológica , Dosagem Radioterapêutica
3.
Phys Med Biol ; 64(3): 035001, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30572320

RESUMO

Positron emission tomography is one of the most mature techniques for monitoring the particles range in hadron therapy, aiming to reduce treatment uncertainties and therefore the extent of safety margins in the treatment plan. In-beam PET monitoring has been already performed using inter-spill and post-irradiation data, i.e. while the particle beam is off or paused. The full beam acquisition procedure is commonly discarded because the particle spills abruptly increase the random coincidence rates and therefore the image noise. This is because random coincidences cannot be separated by annihilation photons originating from radioactive decays and cannot be corrected with standard random coincidence techniques due to the time correlation of the beam-induced background with the ion beam microstructure. The aim of this paper is to provide a new method to recover in-spill data to improve the images obtained with full-beam PET acquisitions. This is done by estimating the temporal microstructure of the beam and thus selecting input PET events that are less likely to be random ones. The PET detector we used was the one developed within the INSIDE project and tested at the CNAO synchrotron-based facility. The data were taken on a PMMA phantom irradiated with 72 MeV proton pencil beams. The obtained results confirm the possibility of improving the acquired PET data without any external signal coming from the synchrotron or ad hoc detectors.


Assuntos
Tomografia por Emissão de Pósitrons , Terapia com Prótons/métodos , Radioterapia Guiada por Imagem/métodos , Humanos , Processamento de Imagem Assistida por Computador , Terapia com Prótons/instrumentação , Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem/instrumentação , Segurança , Síncrotrons , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...