Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 37(6): 109982, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758315

RESUMO

Early blastomeres of mouse preimplantation embryos exhibit bi-potential cell fate, capable of generating both embryonic and extra-embryonic lineages in blastocysts. Here we identify three major two-cell-stage (2C)-specific endogenous retroviruses (ERVs) as the molecular hallmark of this bi-potential plasticity. Using the long terminal repeats (LTRs) of all three 2C-specific ERVs, we identify Krüppel-like factor 5 (Klf5) as their major upstream regulator. Klf5 is essential for bi-potential cell fate; a single Klf5-overexpressing embryonic stem cell (ESC) generates terminally differentiated embryonic and extra-embryonic lineages in chimeric embryos, and Klf5 directly induces inner cell mass (ICM) and trophectoderm (TE) specification genes. Intriguingly, Klf5 and Klf4 act redundantly during ICM specification, whereas Klf5 deficiency alone impairs TE specification. Klf5 is regulated by multiple 2C-specific transcription factors, particularly Dux, and the Dux/Klf5 axis is evolutionarily conserved. The 2C-specific transcription program converges on Klf5 to establish bi-potential cell fate, enabling a cell state with dual activation of ICM and TE genes.


Assuntos
Massa Celular Interna do Blastocisto/citologia , Blastocisto , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição Kruppel-Like/metabolismo , Trofoblastos/citologia , Animais , Massa Celular Interna do Blastocisto/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Feminino , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , RNA-Seq , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Trofoblastos/metabolismo
2.
Mycoses ; 63(3): 275-283, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31774582

RESUMO

BACKGROUND: The sister yeast species Cryptococcus neoformans (serotype A) and Cryptococcus deneoformans (serotype D) are causative agents of deadly cryptococcosis and fungal meningoencephalitis. These haploid yeasts can hybridise in nature, giving rise to AD hybrids that are predominantly diploid or aneuploid. Despite their increasing prevalence in clinical settings, much remains unknown about the allelic distribution patterns in AD hybrid strains. OBJECTIVES: This study aims to characterise allele distributions in AD hybrids derived from the same basidium as well as from multiple basidia in a laboratory-derived C neoformans × C deneoformans hybrid cross. METHODS: We dissected a total of 1625 basidiospores from 31 basidia. The 297 basidiospores that successfully germinated were genotyped by molecular characterisation of 33 markers using PCR-RFLP, with at least two markers on each of the 14 chromosomes in the genome. RESULTS: Of the 297 strains, 294 contained at least one heterozygous locus, with a mean heterozygosity of ~30% per strain. Most hybrid genomes and chromosomes displayed significantly distorted allele distributions, with offspring originating from the same basidium tended to have alleles at different loci from the same parent. More basidia were skewed in favour of C deneoformans alleles, the mitochondria-donor parent, than the C neoformans alleles. CONCLUSIONS: The divergence between C neoformans and C deneoformans genomes has likely created co-adapted allelic combinations, with their co-segregation in hybrid offspring imparting a significant fitness benefit. However, the diversity of genotypes recovered here in a single hybridisation event indicates the enormous capacity of AD hybrids for adaptation and diversification.


Assuntos
Alelos , Criptococose/microbiologia , Cryptococcus neoformans/genética , Cryptococcus/genética , Meningoencefalite/microbiologia , Aneuploidia , Distribuição de Qui-Quadrado , Cryptococcus/classificação , Cryptococcus neoformans/classificação , Diploide , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Técnicas de Genotipagem , Heterozigoto , Hibridização Genética , Perda de Heterozigosidade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Esporos Fúngicos/classificação , Esporos Fúngicos/genética
3.
Mycopathologia ; 184(4): 479-492, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31309402

RESUMO

Aspergillus fumigatus is a globally distributed opportunistic fungal pathogen capable of causing highly lethal invasive aspergillosis in immunocompromised individuals. Recent studies have indicated that the global population consists of multiple, divergent genetic clusters that are geographically broadly distributed. However, most of the analyzed samples have come from continental Eurasia and the Americas where the effects of ancient versus recent factors are difficult to distinguish. Here, we investigated environmental A. fumigatus isolates from Auckland, New Zealand, a geographically isolated population, and compared them with those from other parts of the world to determine the relative roles of historical differentiation and recent gene flow in shaping A. fumigatus populations. Our data suggest that the Auckland A. fumigatus population contains both unique indigenous genetic elements as well as genetic elements that are similar to those from other regions such as Europe, Africa, and North America. Though the hypothesis of random recombination was rejected, we found abundant evidence for phylogenetic incompatibility and recombination within the Auckland A. fumigatus population. Additionally, susceptibility testing identified two triazole-resistant strains, one of which contained the globally distributed mutation TR34/L98H in the cyp51A gene. Our results suggest that contemporary gene flow, likely due to anthropogenic factors, is a major force shaping the New Zealand A. fumigatus population.


Assuntos
Aspergillus fumigatus/classificação , Aspergillus fumigatus/genética , Microbiologia Ambiental , Evolução Molecular , Fluxo Gênico , Variação Genética , Alelos , Aspergillus fumigatus/isolamento & purificação , Farmacorresistência Fúngica , Genes Fúngicos , Nova Zelândia , Recombinação Genética
4.
Infect Drug Resist ; 11: 1549-1555, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288065

RESUMO

PURPOSE: Amphotericin B (AMB) is one of the major antifungal drugs used in the management of aspergillosis and is especially recommended for treating triazole-resistant strains of Aspergillus fumigatus. However, relatively little is known about the AMB susceptibility patterns of A. fumigatus in many parts of the world. This study aims to describe the AMB susceptibility patterns in Hamilton, Ontario, Canada. METHODS: The in vitro susceptibilities of 195 environmental and clinical A. fumigatus isolates to AMB were tested by the broth microdilution method as per the Clinical and Laboratory Standards Institute's guidelines. Catalase-generated oxygen bubbles trapped by Triton X-100 were used to quantify catalase activity in a representative group of isolates. RESULTS: Of the 195 isolates, 188 (96.4%) had the minimum inhibitory concentration (MIC) of AMB ≥2 mg/L, with approximately 80% and 20% of all clinical and environmental isolates having MICs of ≥ 4 mg/L. Overall, the clinical isolates were less susceptible to AMB than environmental isolates (P-value <0.001). The strain with the highest AMB MIC (16 mg/L) had one of the highest catalase activities. However, there was no correlation between AMB MIC and catalase activity in our sample. CONCLUSION: The widespread AMB resistance suggests that using AMB in the management of A. fumigatus infections in Hamilton would likely result in treatment failure. Although high catalase activity may have contributed to AMB resistance in some isolates, the mechanism(s) for the observed AMB resistance in Hamilton is unknown and likely complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...