Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsy Behav ; 78: 187-193, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126704

RESUMO

OBJECTIVE: Executive dysfunction is observed in a sizable number of patients with refractory temporal lobe epilepsy (TLE). The frontostriatal network has been proposed to play a significant role in executive functioning, however, because of the complex architecture of these tracts, it is difficult to generate measures of fiber tract microstructure using standard diffusion tensor imaging. To examine the association between frontostriatal network compromise and executive dysfunction in TLE, we applied an advanced, multishell diffusion model, restriction spectrum imaging (RSI), that isolates measures of intraaxonal diffusion and may provide better estimates of fiber tract compromise in TLE. METHODS: Restriction spectrum imaging scans were obtained from 32 patients with TLE [16 right TLE (RTLE); 16 left TLE (LTLE)] and 24 healthy controls (HC). An RSI-derived measure of intraaxonal anisotropic diffusion (neurite density; ND) was calculated for the inferior frontostriatal tract (IFS) and superior frontostriatal tract (SFS) and compared between patients with TLE and HC. Spearman correlations were performed to evaluate the relationships between ND of each tract and verbal (i.e., D-KEFS Category Switching Accuracy and Color-Word Interference Inhibition/Switching) and visuomotor (Trail Making Test) set-shifting performances in patients with TLE. RESULTS: Patients with TLE demonstrated reductions in ND of the left and right IFS, but not SFS, compared with HC. Reduction in ND of left and right IFS was associated with poorer performance on verbal set-shifting in TLE. Increases in extracellular diffusion (isotropic hindered; IH) were not associated with executive dysfunction in the patient group. SIGNIFICANCE: Restriction spectrum imaging-derived ND revealed microstructural changes within the IFS in patients with TLE, which was associated with poorer executive functioning. This suggests that axonal/myelin loss to fiber networks connecting the striatum to the inferior frontal cortex is likely contributing to executive dysfunction in TLE.


Assuntos
Imagem de Tensor de Difusão/métodos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Função Executiva , Transtornos Mentais/complicações , Neuritos , Lobo Temporal/diagnóstico por imagem , Adulto , Epilepsia do Lobo Temporal/complicações , Feminino , Lobo Frontal , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Teste de Sequência Alfanumérica
2.
Biol Psychiatry ; 71(6): 552-60, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22281121

RESUMO

BACKGROUND: Magnetic resonance imaging studies have shown that structural brain abnormalities are present in both schizophrenia and bipolar disorder. Most previous studies have focused on brain tissue volumes, but advances in neuroimaging data processing have made it possible to separate cortical area and cortical thickness. The purpose of the present study was to provide a more complete picture of cortical morphometric differences in schizophrenia and bipolar disorder, decomposing cortical volume into its constituent parts, cortical thickness and cortical area. METHODS: We analyzed magnetic resonance imaging images from a sample of 173 patients with schizophrenia, 139 patients with bipolar disorder, and 207 healthy control subjects. Maps of cortical volume, area, and thickness across the continuous cortical surface were generated within groups and compared between the groups. RESULTS: There were widespread reductions in cortical volume in schizophrenia relative to healthy control subjects and patients with bipolar disorder type I. These reductions were mainly driven by cortical thinning, but there were also cortical area reductions in more circumscribed regions, which contributed to the observed volume reductions. CONCLUSIONS: The current surface-based methodology allows for a distinction between cortical thinning and reduction in cortical area and reveals that cortical thinning is the most important factor in volume reduction in schizophrenia. Cortical area reduction was not observed in bipolar disorder type I and may be unique to schizophrenia.


Assuntos
Transtorno Bipolar/patologia , Córtex Cerebral/patologia , Esquizofrenia/patologia , Adolescente , Adulto , Idoso , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Adulto Jovem
3.
Biol Psychiatry ; 68(1): 41-50, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20609836

RESUMO

BACKGROUND: Schizophrenia and bipolar disorder are severe psychiatric diseases with overlapping symptomatology. Widespread brain morphologic abnormalities, including cortical thinning and subcortical volume reductions, have been demonstrated in schizophrenia but it is unclear whether similar abnormalities are present in bipolar disorder. The purpose of this study was to compare cortical thickness and subcortical volumes in schizophrenia and bipolar disorder, to assess differences and similarities in cortical and subcortical brain structure. METHODS: We analyzed magnetic resonance images from a sample of 173 patients with schizophrenia spectrum disorder, 139 patients with bipolar disorder, and 207 healthy control subjects. Cortical thickness was compared between the groups in multiple locations across the continuous cortical surface. Subcortical volumes were compared on a structure-by-structure basis. RESULTS: There was widespread cortical thinning in schizophrenia compared with control subjects, in frontal, temporal, occipital, and smaller parietal regions. There was no cortical thinning in bipolar disorder compared with control subjects or in schizophrenia compared with bipolar disorder. However, the subgroup of patients with bipolar disorder Type 1 showed cortical thinning, primarily in the frontal lobes and superior temporal and temporoparietal regions. Both patient groups showed substantial subcortical volume reductions bilaterally in the hippocampus, the left thalamus, the right nucleus accumbens, the left cerebellar cortex, and the brainstem, along with substantial ventricular enlargements. CONCLUSIONS: We found substantial overlap in the underlying brain morphologic abnormalities in schizophrenia and bipolar disorder in subcortical structures, and between schizophrenia and bipolar disorder Type 1 in the cerebral cortex.


Assuntos
Transtorno Bipolar/patologia , Encéfalo/patologia , Esquizofrenia/patologia , Adulto , Antidepressivos/uso terapêutico , Antipsicóticos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico , Feminino , Seguimentos , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador/métodos , Modelos Lineares , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Esquizofrenia/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...