Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679239

RESUMO

We characterize, using molecular dynamics simulations, the structure and mechanical response of a porous glassy system, obtained via arrested phase separation of a model polymer melt. In the absence of external driving, coarsening dynamics, with power-law time dependence, controls the slow structural evolution, in agreement with what was reported for other phase-separating systems. The mechanical response was investigated in athermal quasi-static conditions. In the elastic regime, low values for the Young's and shear modulus were found, as compared to dense glassy systems, which originate from the porous structure. For large deformations, stress-strain curves show a highly intermittent behavior, with avalanches of plastic events. The stress-drop distribution is characterized exploring a large set of parameters. This work goes beyond the previous numerical studies on atomic porous materials, as it first examines the role of chain connectivity in the elastic and plastic responses of materials of this type.

2.
Polymers (Basel) ; 14(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36559927

RESUMO

A polymer model exhibiting heterogeneous Johari−Goldstein (JG) secondary relaxation is studied by extensive molecular-dynamics simulations of states with different temperature and pressure. Time−temperature−pressure superposition of the primary (segmental) relaxation is evidenced. The time scales of the primary and the JG relaxations are found to be highly correlated according to a power law. The finding agrees with key predictions of the Coupling Model (CM) accounting for the decay in a correlation function due to the relaxation and diffusion of interacting systems. Nonetheless, the exponent of the power law, even if it is found in the range predicted by CM (0<ξ<1), deviates from the expected one. It is suggested that the deviation could depend on the particular relaxation process involved in the correlation function and the heterogeneity of the JG process.

3.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012585

RESUMO

Two neural networks (NN) are designed to predict the particle mobility of a molecular glassformer in a wide time window ranging from vibrational dynamics to structural relaxation. Both NNs are trained by information concerning the local structure of the environment surrounding a given particle. The only difference in the learning procedure is the inclusion (NN A) or not (NN B) of the information provided by the fast, vibrational dynamics and quantified by the local Debye-Waller factor. It is found that, for a given temperature, the prediction provided by the NN A is more accurate, a finding which is tentatively ascribed to better account of the bond reorientation. Both NNs are found to exhibit impressive and rather comparable performance to predict the four-point susceptibility χ4(t) at τα, a measure of the dynamic heterogeneity of the system.


Assuntos
Redes Neurais de Computação , Vibração
4.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769167

RESUMO

Ultrathin molecular films deposited on a substrate are ubiquitously used in electronics, photonics, and additive manufacturing methods. The nanoscale surface instability of these systems under uniaxial compression is investigated here by molecular dynamics simulations. We focus on deviations from the homogeneous macroscopic behavior due to the discrete, disordered nature of the deformed system, which might have critical importance for applications. The instability, which develops in the elastoplastic regime above a finite critical strain, leads to the growth of unidimensional wrinkling up to strains as large as 0.5. We highlight both the dominant wavelength and the amplitude of the wavy structure. The wavelength is found to scale geometrically with the film length, λ∝L, up to a compressive strain of ε≃0.4 at least, depending on the film length. The onset and growth of the wrinkling under small compression are quite well described by an extended version of the familiar square-root law in the strain ε observed in macroscopic systems. Under large compression (ε≳0.25), we find that the wrinkling amplitude increases while leaving the cross section nearly constant, offering a novel interpretation of the instability with a large amplitude. The contour length of the film topography is not constant under compression, which is in disagreement with the simple accordion model. These findings might be highly relevant for the design of novel and effective wrinkling and buckling patterns and architectures in flexible platforms for electronics and photonics.


Assuntos
Nanoestruturas/química , Força Compressiva , Membranas Artificiais , Eletricidade Estática , Estresse Mecânico , Propriedades de Superfície
5.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502480

RESUMO

The relaxation properties of viscous liquids close to their glass transition (GT) have been widely characterised by the statistical tool of time correlation functions. However, the strong influence of ubiquitous non-linearities calls for new, alternative tools of analysis. In this respect, information theory-based observables and, more specifically, mutual information (MI) are gaining increasing interest. Here, we report on novel, deeper insight provided by MI-based analysis of molecular dynamics simulations of molecular and macromolecular glass-formers on two distinct aspects of transport and relaxation close to GT, namely dynamical heterogeneity (DH) and secondary Johari-Goldstein (JG) relaxation processes. In a model molecular liquid with significant DH, MI reveals two populations of particles organised in clusters having either filamentous or compact globular structures that exhibit different mobility and relaxation properties. In a model polymer melt, MI provides clearer evidence of JG secondary relaxation and sharper insight into its DH. It is found that both DH and MI between the orientation and the displacement of the bonds reach (local) maxima at the time scales of the primary and JG secondary relaxation. This suggests that, in (macro)molecular systems, the mechanistic explanation of both DH and relaxation must involve rotation/translation coupling.


Assuntos
Substâncias Macromoleculares/química , Modelos Químicos , Viscosidade
6.
Polymers (Basel) ; 13(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921750

RESUMO

The vibrational dynamics of a model polymer glass is studied by Molecular Dynamics simulations. The focus is on the "soft" monomers with high participation to the lower-frequency vibrational modes contributing to the thermodynamic anomalies of glasses. To better evidence their role, the threshold to qualify monomers as soft is made severe, allowing for the use of systems with limited size. A marked tendency of soft monomers to form quasi-local clusters involving up to 15 monomers is evidenced. Each chain contributes to a cluster up to about three monomers and a single cluster involves a monomer belonging to about 2-3 chains. Clusters with monomers belonging to a single chain are rare. The open and tenuous character of the clusters is revealed by their fractal dimension df<2. The inertia tensor of the soft clusters evidences their strong anisotropy in shape and remarkable linear correlation of the two largest eigenvalues. Owing to the limited size of the system, finite-size effects, as well as dependence of the results on the adopted polymer length, cannot be ruled out.

7.
Sci Adv ; 6(17): eaaz0777, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32494635

RESUMO

We examine the influence of steady shear on structural relaxation in a simulated coarse-grained unentangled polymer melt over a wide range of temperature and shear rates. Shear is found to progressively suppress the α-relaxation process observed in the intermediate scattering function, leading ultimately to a purely inertially dominated ß-relaxation at high shear rates, a trend similar to increasing temperature. On the basis of a scaling argument emphasizing dynamic heterogeneity in cooled liquids and its alteration under material deformation, we deduce and validate a parameter-free scaling relation for both the structural relaxation time τα from the intermediate scattering function and the "stretching exponent" ß quantifying the extent of dynamic heterogeneity over the entire range of temperatures and shear rates that we can simulate.

8.
Polymers (Basel) ; 12(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244537

RESUMO

The correlation between the vibrational dynamics, as sensed by the Debye-Waller factor, and the primary relaxation in the presence of secondary Johari-Goldstein (JG) relaxation, has been investigated through molecular dynamics simulations. Two melts of polymer chains with different bond length, resulting in rather different strength of the JG relaxation are studied. We focus on the bond-orientation correlation function, exhibiting higher JG sensitivity with respect to alternatives provided by torsional autocorrelation function and intermediate scattering function. We find that, even if changing the bond length alters both the strength and the relaxation time of the JG relaxation, it leaves unaffected the correlation between the vibrational dynamics and the primary relaxation. The finding is in harmony with previous studies reporting that numerical models not showing secondary relaxations exhibit striking agreement with experimental data of polymers also where the presence of JG relaxation is known.

9.
Int J Mol Sci ; 20(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739510

RESUMO

Many systems, including polymers and molecular liquids, when adequately cooled and/or compressed, solidify into a disordered solid, i.e., a glass. The transition is not abrupt, featuring progressive decrease of the microscopic mobility and huge slowing down of the relaxation. A distinctive aspect of glass-forming materials is the microscopic dynamical heterogeneity (DH), i.e., the presence of regions with almost immobile particles coexisting with others where highly mobile ones are located. Following the first compelling evidence of a strong correlation between vibrational dynamics and ultraslow relaxation, we posed the question if the vibrational dynamics encodes predictive information on DH. Here, we review our results, drawn from molecular-dynamics numerical simulation of polymeric and molecular glass-formers, with a special focus on both the breakdown of the Stokes-Einstein relation between diffusion and viscosity, and the size of the regions with correlated displacements.


Assuntos
Modelos Teóricos , Transição de Fase , Polímeros/química , Vibração , Viscosidade , Algoritmos
10.
Eur Phys J E Soft Matter ; 42(11): 146, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31754931

RESUMO

The correlations detected by the mutual information in the propensities of a molecular viscous liquid are studied by molecular-dynamics simulations. Dynamic heterogeneity is evidenced and two particle fractions with different mobility and relaxation identified. The two fractions exhibit the scaling of their relaxation in terms of the rattling amplitude of the particle trapped in the cage of the first neighbours 〈u2〉 . The scaling master curve does not differ from the one found for bulk systems, thus confirming identical results previously reported in other systems with strong dynamic heterogeneity as thin molecular films. The excitation of planar and globular structures at short and long times with respect to structural relaxation, respectively, is revealed. Some of the globular structures are different from the ones evidenced in atomic mixtures. States with equal 〈u2〉 are found to have identical time dependence of several quantities, referring to both bulk and the two fractions with heterogeneous dynamics, at least up to the structural relaxation time [Formula: see text].

11.
Phys Rev E ; 94(4-1): 040102, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27841545

RESUMO

We show that critical Casimir effects can be accessed through direct simulation of a model binary fluid passing through the demixing transition. We work in the semi-grand-canonical ensemble, in slab geometry, in which the Casimir force appears as the excess of the generalized pressure, P_{⊥}-nµ. The excesses of the perpendicular pressure, P_{⊥}, and of nµ, are individually of much larger amplitude. A critical pressure anisotropy is observed between forces parallel and perpendicular to the confinement direction, which collapses onto a universal scaling function closely related to that of the critical Casimir force.

12.
Phys Rev Lett ; 116(6): 065501, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26918998

RESUMO

We study stress time series caused by plastic avalanches in athermally sheared disordered materials. Using particle-based simulations and a mesoscopic elastoplastic model, we analyze system size and shear-rate dependence of the stress-drop duration and size distributions together with their average temporal shape. We find critical exponents different from mean-field predictions, and a clear asymmetry for individual avalanches. We probe scaling relations for the rate dependency of the dynamics and we report a crossover towards mean-field results for strong driving.

13.
Soft Matter ; 11(38): 7639-47, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26294288

RESUMO

Although the notion of mechanical noise is expected to play a key role in the non-linear rheology of athermally sheared amorphous systems, its characterization has so far remained elusive. Here, we show using molecular dynamic simulations that in spite of the presence of strong spatio-temporal correlations in the system, the local stress exhibits normal diffusion under the effect of the mechanical noise in the finite driving regime. The diffusion constant appears to be proportional to the mean plastic activity. Our data suggests that the corresponding proportionality constant is density independent, and can be directly related to the specific form of the rheological flow curve, pointing the way to a generic way of modeling mechanical noise in mean-field equations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...