Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 32(3): e2509, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34870357

RESUMO

Coral reefs have evolved over millennia to survive disturbances. Yet, in just a few decades chronic local pressures and the climate catastrophe have accelerated so quickly that most coral reefs are now threatened. Rising ocean temperatures and recurrent bleaching pose the biggest threat, affecting even remote and well-managed reefs on global scales. We illustrate how coral bleaching is altering reefs by contrasting the dynamics of adjacent reef systems over more than two decades. Both reef systems sit near the edge of northwest Australia's continental shelf, have escaped chronic local pressures and are regularly affected by tropical storms and cyclones. The Scott reef system has experienced multiple bleaching events, including mass bleaching in 1998 and 2016, from which it is unlikely to fully recover. The Rowley Shoals has maintained a high cover and diversity of corals and has not yet been impacted by mass bleaching. We show how the dynamics of both reef systems were driven by a combination of local environment, exposure to disturbances and coral life history traits, and consider future shifts in community structure with ongoing climate change. We then demonstrate how applying knowledge of community dynamics at local scales can aid management strategies to slow the degradation of coral reefs until carbon emissions and other human impacts are properly managed.


Assuntos
Antozoários , Tempestades Ciclônicas , Animais , Mudança Climática , Recifes de Corais , Ecossistema
2.
Glob Chang Biol ; 25(7): 2431-2445, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30900790

RESUMO

In the face of increasing cumulative effects from human and natural disturbances, sustaining coral reefs will require a deeper understanding of the drivers of coral resilience in space and time. Here we develop a high-resolution, spatially explicit model of coral dynamics on Australia's Great Barrier Reef (GBR). Our model accounts for biological, ecological and environmental processes, as well as spatial variation in water quality and the cumulative effects of coral diseases, bleaching, outbreaks of crown-of-thorns starfish (Acanthaster cf. solaris), and tropical cyclones. Our projections reconstruct coral cover trajectories between 1996 and 2017 over a total reef area of 14,780 km2 , predicting a mean annual coral loss of -0.67%/year mostly due to the impact of cyclones, followed by starfish outbreaks and coral bleaching. Coral growth rate was the highest for outer shelf coral communities characterized by digitate and tabulate Acropora spp. and exposed to low seasonal variations in salinity and sea surface temperature, and the lowest for inner-shelf communities exposed to reduced water quality. We show that coral resilience (defined as the net effect of resistance and recovery following disturbance) was negatively related to the frequency of river plume conditions, and to reef accessibility to a lesser extent. Surprisingly, reef resilience was substantially lower within no-take marine protected areas, however this difference was mostly driven by the effect of water quality. Our model provides a new validated, spatially explicit platform for identifying the reefs that face the greatest risk of biodiversity loss, and those that have the highest chances to persist under increasing disturbance regimes.


Assuntos
Antozoários , Recifes de Corais , Animais , Austrália , Biodiversidade , Qualidade da Água
3.
PLoS One ; 10(4): e0121272, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874718

RESUMO

Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1-Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Tempestades Ciclônicas , Animais , Austrália , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...