Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Protoc ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702386

RESUMO

Temporal development of neural electrophysiology follows genetic programming, similar to cellular maturation and organization during development. The emergent properties of this electrophysiological development, namely neural oscillations, can be used to characterize brain development. Recently, we utilized the innate programming encoded in the human genome to generate functionally mature cortical organoids. In brief, stem cells are suspended in culture via continuous shaking and naturally aggregate into embryoid bodies before being exposed to media formulations for neural induction, differentiation and maturation. The specific culture format, media composition and duration of exposure to these media distinguish organoid protocols and determine whether a protocol is guided or unguided toward specific neural fate. The 'semi-guided' protocol presented here has shorter induction and differentiation steps with less-specific patterning molecules than most guided protocols but maintains the use of neurotrophic factors such as brain-derived growth factor and neurotrophin-3, unlike unguided approaches. This approach yields the cell type diversity of unguided approaches while maintaining reproducibility for disease modeling. Importantly, we characterized the electrophysiology of these organoids and found that they recapitulate the maturation of neural oscillations observed in the developing human brain, a feature not shown with other approaches. This protocol represents the potential first steps toward bridging molecular and cellular biology to human cognition, and it has already been used to discover underlying features of human brain development, evolution and neurological conditions. Experienced cell culture technicians can expect the protocol to take 1 month, with extended maturation, electrophysiology recording, and adeno-associated virus transduction procedure options.

3.
Nat Commun ; 13(1): 7945, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572698

RESUMO

Human cortical organoids, three-dimensional neuronal cultures, are emerging as powerful tools to study brain development and dysfunction. However, whether organoids can functionally connect to a sensory network in vivo has yet to be demonstrated. Here, we combine transparent microelectrode arrays and two-photon imaging for longitudinal, multimodal monitoring of human cortical organoids transplanted into the retrosplenial cortex of adult mice. Two-photon imaging shows vascularization of the transplanted organoid. Visual stimuli evoke electrophysiological responses in the organoid, matching the responses from the surrounding cortex. Increases in multi-unit activity (MUA) and gamma power and phase locking of stimulus-evoked MUA with slow oscillations indicate functional integration between the organoid and the host brain. Immunostaining confirms the presence of human-mouse synapses. Implantation of transparent microelectrodes with organoids serves as a versatile in vivo platform for comprehensive evaluation of the development, maturation, and functional integration of human neuronal networks within the mouse brain.


Assuntos
Neurônios , Córtex Visual , Humanos , Animais , Camundongos , Neurônios/fisiologia , Encéfalo , Próteses e Implantes , Organoides/transplante , Córtex Visual/fisiologia
4.
Genes (Basel) ; 13(6)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35741838

RESUMO

Hereditary myopathies are a group of genetically determined muscle disorders comprising more than 300 entities. In Chile, there are no specific registries of the distinct forms of these myopathies. We now report the genetic findings of a series of Chilean patients presenting with limb-girdle muscle weakness of unknown etiology. Eighty-two patients were explored using high-throughput sequencing approaches with neuromuscular gene panels, establishing a definite genetic diagnosis in 49 patients (59.8%) and a highly probable genetic diagnosis in eight additional cases (9.8%). The most frequent causative genes identified were DYSF and CAPN3, accounting for 22% and 8.5% of the cases, respectively, followed by DMD (4.9%) and RYR1 (4.9%). The remaining 17 causative genes were present in one or two cases only. Twelve novel variants were identified. Five patients (6.1%) carried a variant of uncertain significance in genes partially matching the clinical phenotype. Twenty patients (24.4%) did not carry a pathogenic or likely pathogenic variant in the phenotypically related genes, including five patients (6.1%) presenting an autoimmune neuromuscular disorder. The relative frequency of the different forms of myopathy in Chile is like that of other series reported from different regions of the world with perhaps a relatively higher incidence of dysferlinopathy.


Assuntos
Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Chile , Perfil Genético , Humanos , Debilidade Muscular/genética , Distrofia Muscular do Cíngulo dos Membros/epidemiologia , Distrofia Muscular do Cíngulo dos Membros/genética
5.
Neurophotonics ; 9(Suppl 1): 013001, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35493335

RESUMO

Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.

6.
Brain ; 145(6): 1962-1977, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34957478

RESUMO

Focal cortical dysplasia is a highly epileptogenic cortical malformation with few treatment options. Here, we generated human cortical organoids from patients with focal cortical dysplasia type II. Using this human model, we mimicked some focal cortical dysplasia hallmarks, such as impaired cell proliferation, the presence of dysmorphic neurons and balloon cells, and neuronal network hyperexcitability. Furthermore, we observed alterations in the adherens junctions zonula occludens-1 and partitioning defective 3, reduced polarization of the actin cytoskeleton, and fewer synaptic puncta. Focal cortical dysplasia cortical organoids showed downregulation of the small GTPase RHOA, a finding that was confirmed in brain tissue resected from these patients. Functionally, both spontaneous and optogenetically-evoked electrical activity revealed hyperexcitability and enhanced network connectivity in focal cortical dysplasia organoids. Taken together, our findings suggest a ventricular zone instability in tissue cohesion of neuroepithelial cells, leading to a maturational arrest of progenitors or newborn neurons, which may predispose to cellular and functional immaturity and compromise the formation of neural networks in focal cortical dysplasia.


Assuntos
Epilepsia , Malformações do Desenvolvimento Cortical do Grupo I , Malformações do Desenvolvimento Cortical , Encéfalo , Humanos , Recém-Nascido , Neurônios
7.
Front Neurosci ; 15: 647877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335152

RESUMO

Despite advancements in the development of cell-based in-vitro neuronal network models, the lack of appropriate computational tools limits their analyses. Methods aimed at deciphering the effective connections between neurons from extracellular spike recordings would increase utility of in vitro local neural circuits, especially for studies of human neural development and disease based on induced pluripotent stem cells (hiPSC). Current techniques allow statistical inference of functional couplings in the network but are fundamentally unable to correctly identify indirect and apparent connections between neurons, generating redundant maps with limited ability to model the causal dynamics of the network. In this paper, we describe a novel mathematically rigorous, model-free method to map effective-direct and causal-connectivity of neuronal networks from multi-electrode array data. The inference algorithm uses a combination of statistical and deterministic indicators which, first, enables identification of all existing functional links in the network and then reconstructs the directed and causal connection diagram via a super-selective rule enabling highly accurate classification of direct, indirect, and apparent links. Our method can be generally applied to the functional characterization of any in vitro neuronal networks. Here, we show that, given its accuracy, it can offer important insights into the functional development of in vitro hiPSC-derived neuronal cultures.

8.
Front Cell Neurosci ; 15: 671549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122014

RESUMO

Voltage imaging and "all-optical electrophysiology" in human induced pluripotent stem cell (hiPSC)-derived neurons have opened unprecedented opportunities for high-throughput phenotyping of activity in neurons possessing unique genetic backgrounds of individual patients. While prior all-optical electrophysiology studies relied on genetically encoded voltage indicators, here, we demonstrate an alternative protocol using a synthetic voltage sensor and genetically encoded optogenetic actuator that generate robust and reproducible results. We demonstrate the functionality of this method by measuring spontaneous and evoked activity in three independent hiPSC-derived neuronal cell lines with distinct genetic backgrounds.

9.
Front Syst Neurosci ; 15: 564124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767613

RESUMO

Understanding how the structural connectivity and spatial geometry of a network constrains the dynamics it is able to support is an active and open area of research. We simulated the plausible dynamics resulting from the known C. elegans connectome using a recent model and theoretical analysis that computes the dynamics of neurobiological networks by focusing on how local interactions among connected neurons give rise to the global dynamics in an emergent way. We studied the dynamics which resulted from stimulating a chemosensory neuron (ASEL) in a known feeding circuit, both in isolation and embedded in the full connectome. We show that contralateral motorneuron activations in ventral (VB) and dorsal (DB) classes of motorneurons emerged from the simulations, which are qualitatively similar to rhythmic motorneuron firing pattern associated with locomotion of the worm. One interpretation of these results is that there is an inherent-and we propose-purposeful structural wiring to the C. elegans connectome that has evolved to serve specific behavioral functions. To study network signaling pathways responsible for the dynamics we developed an analytic framework that constructs Temporal Sequences (TSeq), time-ordered walks of signals on graphs. We found that only 5% of TSeq are preserved between the isolated feeding network relative to its embedded counterpart. The remaining 95% of signaling pathways computed in the isolated network are not present in the embedded network. This suggests a cautionary note for computational studies of isolated neurobiological circuits and networks.

10.
Cells ; 10(2)2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494281

RESUMO

Schizophrenia (SCZ) and bipolar disorder (BIP) are severe mental disorders with a considerable disease burden worldwide due to early age of onset, chronicity, and lack of efficient treatments or prevention strategies. Whilst our current knowledge is that SCZ and BIP are highly heritable and share common pathophysiological mechanisms associated with cellular signaling, neurotransmission, energy metabolism, and neuroinflammation, the development of novel therapies has been hampered by the unavailability of appropriate models to identify novel targetable pathomechanisms. Recent data suggest that neuron-glia interactions are disturbed in SCZ and BIP, and are modulated by estrogen (E2). However, most of the knowledge we have so far on the neuromodulatory effects of E2 came from studies on animal models and human cell lines, and may not accurately reflect many processes occurring exclusively in the human brain. Thus, here we highlight the advantages of using induced pluripotent stem cell (iPSC) models to revisit studies of mechanisms underlying beneficial effects of E2 in human brain cells. A better understanding of these mechanisms opens the opportunity to identify putative targets of novel therapeutic agents for SCZ and BIP. In this review, we first summarize the literature on the molecular mechanisms involved in SCZ and BIP pathology and the beneficial effects of E2 on neuron-glia interactions. Then, we briefly present the most recent developments in the iPSC field, emphasizing the potential of using patient-derived iPSCs as more relevant models to study the effects of E2 on neuron-glia interactions.


Assuntos
Transtorno Bipolar/patologia , Comunicação Celular , Estrogênios/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Neuroglia/metabolismo , Neurônios/metabolismo , Esquizofrenia/patologia , Animais , Transtorno Bipolar/genética , Transtorno Bipolar/fisiopatologia , Humanos , Esquizofrenia/genética , Esquizofrenia/fisiopatologia
11.
Hum Mutat ; 41(10): 1797-1810, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32668095

RESUMO

Improving the accuracy of variant interpretation during diagnostic sequencing is a major goal for genomic medicine. To explore an often-overlooked splicing effect of missense variants, we developed the functional assay ("minigene") for the majority of exons of CAPN3, the gene responsible for limb girdle muscular dystrophy. By systematically screening 21 missense variants distributed along the gene, we found that eight clinically relevant missense variants located at a certain distance from the exon-intron borders (deep exonic missense variants) disrupted normal splicing of CAPN3 exons. Several recent machine learning-based computational tools failed to predict splicing impact for the majority of these deep exonic missense variants, highlighting the importance of including variants of this type in the training sets during the future algorithm development. Overall, 24 variants in CAPN3 gene were explored, leading to the change in the American College of Medical Genetics and Genomics classification of seven of them when results of the "minigene" functional assay were considered. Our findings reveal previously unknown splicing impact of several clinically important variants in CAPN3 and draw attention to the existence of deep exonic variants with a disruptive effect on gene splicing that could be overlooked by the current approaches in clinical genetics.


Assuntos
Calpaína , Proteínas Musculares , Distrofia Muscular do Cíngulo dos Membros , Calpaína/genética , Éxons/genética , Humanos , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação de Sentido Incorreto , Splicing de RNA
12.
Neurol Genet ; 5(6): e372, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31872053

RESUMO

OBJECTIVE: To investigate the distribution of cytosine-guanine dinucleotide (CpG) sites with a variable level of DNA methylation of the D4Z4 macrosatellite element in patients with facioscapulohumeral dystrophy (FSHD). METHODS: By adapting bisulfite modification to deep sequencing, we performed a comprehensive analysis of D4Z4 methylation across D4Z4 repeats and adjacent 4qA sequence in DNA from patients with FSHD1, FSHD2, or mosaicism and controls. RESULTS: Using hierarchical clustering, we identified clusters with different levels of methylation and separated, thereby the different groups of samples (controls, FSHD1, and FSHD2) based on their respective level of methylation. We further show that deep sequencing-based methylation analysis discriminates mosaic cases for which methylation changes have never been evaluated previously. CONCLUSIONS: Altogether, our approach offers a new high throughput tool for estimation of the D4Z4 methylation level in the different subcategories of patients having FSHD. This methodology allows for a comprehensive and discriminative analysis of different regions along the macrosatellite repeat and identification of focal regions or CpG sites differentially methylated in patients with FSHD1 and FSHD2 but also complex cases such as those presenting mosaicism.

13.
Sci Rep ; 8(1): 10460, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29992977

RESUMO

Dynamic signaling on branching axons is critical for rapid and efficient communication between neurons in the brain. Efficient signaling in axon arbors depends on a trade-off between the time it takes action potentials to reach synaptic terminals (temporal cost) and the amount of cellular material associated with the wiring path length of the neuron's morphology (material cost). However, where the balance between structural and dynamical considerations for achieving signaling efficiency is, and the design principle that neurons optimize to preserve this balance, is still elusive. In this work, we introduce a novel analysis that compares morphology and signaling dynamics in axonal networks to address this open problem. We show that in Basket cell neurons the design principle being optimized is the ratio between the refractory period of the membrane, and action potential latencies between the initial segment and the synaptic terminals. Our results suggest that the convoluted paths taken by axons reflect a design compensation by the neuron to slow down signaling latencies in order to optimize this ratio. Deviations in this ratio may result in a breakdown of signaling efficiency in the cell. These results pave the way to new approaches for investigating more complex neurophysiological phenomena that involve considerations of neuronal structure-function relationships.


Assuntos
Neurônios/fisiologia , Transdução de Sinais , Potenciais de Ação/fisiologia , Animais , Axônios/fisiologia , Gatos , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/fisiologia , Ratos , Período Refratário Eletrofisiológico , Análise Espaço-Temporal
14.
Hum Mutat ; 38(10): 1432-1441, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28744936

RESUMO

Facioscapulohumeral dystrophy (FSHD), one of the most common hereditary neuromuscular disorders, is associated with a complex combination of genetic variations at the subtelomeric 4q35 locus. As molecular diagnosis relying on Southern blot (SB) might be challenging in some cases, molecular combing (MC) was recently developed as an additional technique for FSHD diagnosis and exploration of the genomic organization of the 4q35 and 10q26 regions. In complement to the usual SB, we applied MC in a large cohort of 586 individuals with clinical FSHD. In 332 subjects, the two 4q alleles were normal in size, allowing exclusion of FSHD1 while we confirmed FSHD1 in 230 patients. In 14 patients from 10 families, we identified a recurrent complex heterozygous rearrangement at 4q35 consisting of a duplication of the D4Z4 array and a 4qA haplotype, irresolvable by the SB technique. In five families, we further identified variations in the SMCHD1 gene. Impact of the different mutations was tested using a minigene assay and we analyzed DNA methylation after sodium bisulfite modification and NGS sequencing. We discuss the involvement of this rearrangement in FSHD since all mutations in SMCHD1 are not associated with D4Z4 hypomethylation and do not always segregate with the disease.


Assuntos
Proteínas Cromossômicas não Histona/genética , Predisposição Genética para Doença , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/genética , Patologia Molecular , Alelos , Aberrações Cromossômicas , Cromossomos Humanos Par 10/genética , Cromossomos Humanos Par 4/genética , Metilação de DNA/genética , Feminino , Variação Genética , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Distrofia Muscular Facioescapuloumeral/fisiopatologia , Mutação/genética
15.
Methods ; 129: 89-95, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28600228

RESUMO

In this work, we have developed for the first time a method to make novel gold and platinum hybrid bimetallic nanostructures differing in shape and size. Au-Pt nanostructures were prepared by electrodeposition in two simple steps. The first step consists of the electrodeposition of nanocoral Au onto a gold substrate using hydrogen as a dynamic template in an ammonium chloride solution. After that, the Pt nanostructures were deposited onto the nanocoral Au organized in pores. Using Pt (II) and Pt (IV), we realized nanocoral Au decorated with Pt nanospheres and nanocoral Au decorated with Pt nanoflowers, respectively. The bimetallic nanostructures showed better capability to electrochemically oxidize hydrogen peroxide compared with nanocoral Au. Moreover, Au-Pt nanostructures were able to lower the potential of detection and a higher performance was obtained at a low applied potential. Then, glucose oxidase was immobilized onto the bimetallic Au-Pt nanostructure using cross-linking with glutaraldehyde. The biosensor was characterized by chronoamperometry at +0.15V vs. Ag pseudo-reference electrode (PRE) and showed good analytical performances with a linear range from 0.01 to 2.00mM and a sensitivity of 33.66µA/mMcm2. The good value of Kmapp (2.28mM) demonstrates that the hybrid nanostructure is a favorable environment for the enzyme. Moreover, the low working potential can minimize the interference from ascorbic acid and uric acid as well as reducing power consumption to effect sensing. The simple procedure to realize this nanostructure and to immobilize enzymes, as well as the analytical performances of the resulting devices, encourage the use of this technology for the development of biosensors for clinical analysis.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/isolamento & purificação , Nanoestruturas/química , Glucose/química , Glucose Oxidase/química , Ouro/química , Peróxido de Hidrogênio/química , Platina/química
16.
BMC Med Genet ; 17(1): 66, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27634379

RESUMO

BACKGROUND: The main form of Facio-Scapulo-Humeral muscular Dystrophy is linked to copy number reduction of the 4q D4Z4 macrosatellite (FSHD1). In 5 % of cases, FSHD phenotype appears in the absence of D4Z4 reduction (FSHD2). In 70-80 % of these patients, variants of the SMCHD1 gene segregate with 4qA haplotypes and D4Z4 hypomethylation. CASE PRESENTATION: We report a family presenting with neuromuscular symptoms reminiscent of FSHD but without D4Z4 copy reduction. We characterized the 4q35 region using molecular combing, searched for mutation in the SMCHD1 gene and determined D4Z4 methylation level by sodium bisulfite sequencing. We further investigated the impact of the SMCHD1 mutation at the protein level and on the NMD-dependent degradation of transcript. In muscle, we observe moderate but significant reduction in D4Z4 methylation, not correlated with DUX4-fl expression. Exome sequencing revealed a heterozygous insertion of 7 bp in exon 37 of the SMCHD1 gene producing a loss of frame with premature stop codon 4 amino acids after the insertion (c.4614-4615insTATAATA). Both wild-type and mutated transcripts are detected. CONCLUSION: The truncated protein is absent and the full-length protein level is similar in patients and controls indicating that in this family, FSHD is not associated with SMCHD1 haploinsufficiency.


Assuntos
Proteínas Cromossômicas não Histona/genética , Metilação de DNA , Repetições de Microssatélites , Distrofia Muscular Facioescapuloumeral/genética , Mutação , Segregação de Cromossomos , Cromossomos Humanos Par 4/genética , Humanos , Linhagem
17.
Ann Neurol ; 78(3): 387-400, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26018399

RESUMO

OBJECTIVE: Facioscapulohumeral muscular dystrophy (FSHD) is linked to either contraction of D4Z4 repeats on chromosome 4 or to mutations in the SMCHD1 gene, both of which result in the aberrant expression of the transcription factor DUX4. However, it is still difficult to correlate these genotypes with the phenotypes observed in patients. Because we have recently shown that mice with disrupted Fat1 functions exhibit FSHD-like phenotypes, we have investigated the expression of the human FAT1 gene in FSHD. METHODS: We first analyzed FAT1 expression in FSHD adult muscles and determined whether FAT1 expression was driven by DUX4. We next determined FAT1 expression levels in 64 muscles isolated from 16 control fetuses. These data were further complemented with analysis of Fat1 expression in developing mouse embryos. RESULTS: We demonstrated that FAT1 expression is independent of DUX4. Moreover, we observed that (1) in control fetal human biopsies or in developing mouse embryos, FAT1 is expressed at lower levels in muscles that are affected at early stages of FSHD progression than in muscles that are affected later or are nonaffected; and (2) in adult muscle biopsies, FAT1 expression is lower in FSHD muscles compared to control muscles. INTERPRETATION: We propose a revised model for FSHD in which FAT1 levels might play a role in determining which muscles will exhibit early and late disease onset, whereas DUX4 may worsen the muscle phenotype.


Assuntos
Caderinas/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/metabolismo , Músculo Quadríceps/metabolismo , Músculo Quadríceps/patologia , Adulto , Animais , Células Cultivadas , Feminino , Feto , Humanos , Masculino , Camundongos , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Quadríceps/embriologia
18.
Hum Mutat ; 36(4): 443-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25615407

RESUMO

Facioscapulohumeralmuscular dystrophy (FSHD) is linked to copy-number reduction (N < 10) of the 4q D4Z4 subtelomeric array, in association with DUX4-permissive haplotypes. This main form is indicated as FSHD1. FSHD-like phenotypes may also appear in the absence of D4Z4 copy-number reduction. Variants of the SMCHD1 gene have been reported to associate with D4Z4 hypomethylation in DUX4-compatible haplotypes, thus defining FSHD2. Recently, mice carrying a muscle-specific knock-out of the protocadherin gene Fat1 or its constitutive hypomorphic allele were shown to develop muscular and nonmuscular defects mimicking human FSHD. Here, we report FAT1 variants in a group of patients presenting with neuromuscular symptoms reminiscent of FSHD. The patients do not carry D4Z4 copy-number reduction, 4q hypomethylation, or SMCHD1 variants. However, abnormal splicing of the FAT1 transcript is predicted for all identified variants. To determine their pathogenicity, we elaborated a minigene approach coupled to an antisense oligonucleotide (AON) assay. In vitro, four out of five selected variants induced partial or complete alteration of splicing by creating new splice sites or modifying splicing regulators. AONs confirmed these effects. Altered transcripts may affect FAT1 protein interactions or stability. Altogether, our data suggest that defective FAT1 is associated with an FSHD-like phenotype.


Assuntos
Caderinas/genética , Cromossomos Humanos Par 4 , Variação Genética , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/genética , Fenótipo , Adolescente , Adulto , Idoso , Alelos , Processamento Alternativo , Criança , Pré-Escolar , Metilação de DNA , Éxons , Expressão Gênica , Genes Reporter , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Adulto Jovem
19.
Neurology ; 83(8): 733-42, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25031281

RESUMO

OBJECTIVE: We investigated the link between DNA hypomethylation and clinical penetrance in facioscapulohumeral dystrophy (FSHD) because hypomethylation is moderate and heterogeneous in patients and could not thus far be correlated with disease presence or severity. METHODS: To investigate the link between clinical signs of FSHD and DNA methylation, we explored 95 cases (37 FSHD1, 29 asymptomatic individuals carrying a shortened D4Z4 array, 9 patients with FSHD2, and 20 controls) by implementing 2 approaches: methylated DNA immunoprecipitation and sodium bisulfite sequencing. RESULTS: Both methods revealed statistically significant differences between asymptomatic carriers or controls and individuals with clinical FSHD, especially in the proximal region of the repeat. Absence of clinical expression in asymptomatic carriers is associated with a level of methylation similar to controls. CONCLUSIONS: We provide a proof of concept that the targeted approaches that we describe could be applied systematically to patient samples in routine diagnosis and suggest that local hypomethylation within D4Z4 might serve as a modifier for clinical expression of FSHD phenotype. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that assays for hypomethylation within the D4Z4 region accurately distinguish patients with FSHD from individuals with D4Z4 contraction without FSHD.


Assuntos
Cromossomos Humanos Par 4 , Metilação de DNA/genética , Predisposição Genética para Doença , Distrofia Muscular Facioescapuloumeral/genética , Adulto , Epigênese Genética/genética , Feminino , Testes Genéticos , Heterozigoto , Humanos , Masculino , Distrofia Muscular Facioescapuloumeral/diagnóstico , Linhagem , Penetrância , Fenótipo , Adulto Jovem
20.
IEEE Trans Nanobioscience ; 13(1): 19-30, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24594511

RESUMO

We attempt to examine the potential of silicon nanowire memristors in the field of nanobiosensing. The memristive devices are crystalline Silicon (Si) Nanowires (NWs) with Nickel Silicide (NiSi) terminals. The nanowires are fabricated on a Silicon-on-Insulator (SOI) wafer by an Ebeam Lithography Technique (EBL) process that allows high resolution at the nanoscale. A Deep Reactive Ion Etching (DRIE) technique is used to define free-standing nanowires. The close alignment between Silicon (Si) and Nickel-Silicide (NiSi) terminals forms a Schottky-barrier at their junction. The memristive effect of the fabricated devices matches well with the memristor theory. An equivalent circuit reproducing the memristive effect in current-voltage (I-V) characteristics of our silicon nanowires is presented too. The memristive silicon nanowire devices are then functionalized with anti-human VEGF (Vascular Endothelial Growth Factor) antibody and I-V characteristics are examined for the nanowires prior to and after protein functionalization. The uptake of bio-molecules linked to the surface of the memristive NWs is confirmed by the increased voltage gap in the hysteresis curve. The effects of varying humidity conditions on the conductivity of bio-modified memristive silicon nanowires are deeply investigated.


Assuntos
Anticorpos/química , Técnicas Biossensoriais , Nanofios/química , Níquel/química , Compostos de Silício/química , Silício/química , Anticorpos/imunologia , Humanos , Umidade , Microscopia Eletrônica de Varredura , Modelos Teóricos , Nanofios/ultraestrutura , Imagem Óptica , Fator A de Crescimento do Endotélio Vascular/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...