Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 129(5): 754-771, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37443350

RESUMO

BACKGROUND: Breast cancer (BC) metastasis, which often occurs in bone, contributes substantially to mortality. MicroRNAs play a fundamental role in BC metastasis, although microRNA-regulated mechanisms driving metastasis progression remain poorly understood. METHODS: MiRome analysis in serum from BC patients was performed by TaqMan™ low-density array. MiR-662 was overexpressed following MIMIC-transfection or lentivirus transduction. Animal models were used to investigate the role of miR-662 in BC (bone) metastasis. The effect of miR-662-overexpressing BC cell conditioned medium on osteoclastogenesis was investigated. ALDEFLUOR assays were performed to study BC stemness. RNA-sequencing transcriptomic analysis of miR-662-overexpressing BC cells was performed to evaluate gene expression changes. RESULTS: High levels of hsa-miR-662 (miR-662) in serum from BC patients, at baseline (time of surgery), were associated with future recurrence in bone. At an early-stage of the metastatic disease, miR-662 could mask the presence of BC metastases in bone by inhibiting the differentiation of bone-resorbing osteoclasts. Nonetheless, metastatic miR-662-overexpressing BC cells then progressed as overt osteolytic metastases thanks to increased stem cell-like traits. CONCLUSIONS: MiR-662 is involved in BC metastasis progression, suggesting it may be used as a prognostic marker to identify BC patients at high risk of metastasis.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , MicroRNAs , Animais , Neoplasias Ósseas/patologia , Neoplasias da Mama/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Metástase Neoplásica , Recidiva Local de Neoplasia/genética , Humanos
2.
Cancers (Basel) ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36612237

RESUMO

Bone is a frequent site of metastasis. Bone metastasis is associated with a short-term prognosis in cancer patients, and current treatments aim to slow its growth, but are rarely curative. Thus, revealing molecular mechanisms that explain why metastatic cells are attracted to the bone micro-environment, and how they successfully settle in the bone marrow-taking advantage over bone resident cells-and grow into macro-metastasis, is essential to propose new therapeutic approaches. MicroRNAs and snoRNAs are two classes of small non-coding RNAs that post-transcriptionally regulate gene expression. Recently, microRNAs and snoRNAs have been pointed out as important players in bone metastasis by (i) preparing the pre-metastatic niche, directly and indirectly affecting the activities of osteoclasts and osteoblasts, (ii) promoting metastatic properties within cancer cells, and (iii) acting as mediators within cells to support cancer cell growth in bone. This review aims to highlight the importance of microRNAs and snoRNAs in metastasis, specifically in bone, and how their roles can be linked together. We then discuss how microRNAs and snoRNAs are secreted by cancer cells and be found as extracellular vesicle cargo. Finally, we provide evidence of how microRNAs and snoRNAs can be potential therapeutic targets, at least in pre-clinical settings, and how their detection in liquid biopsies can be a useful diagnostic and/or prognostic biomarker to predict the risk of relapse in cancer patients.

3.
Curr Osteoporos Rep ; 19(3): 256-263, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33830428

RESUMO

Bone metastasis occurs in advanced stages of breast cancer, worsening the quality of life and increasing the mortality of patients. Current treatments for bone metastasis are only palliative, and efficient therapeutic targets need to be still identified. MicroRNAs (miRNAs) are a large class of small non-coding RNAs that regulate gene expression within cells. Interestingly, the expression of certain miRNAs has been associated with several stages of bone metastasis progression, highlighting the importance of these small RNAs during the course of the metastatic disease. In this review, we aim to summarise the most recent findings on miRNAs and their mRNA targets in driving breast cancer bone metastasis. Furthermore, we discuss the possibility to use miRNAs as direct therapeutic targets or as advanced therapies for breast cancer bone metastasis, as well as their potential as predictive biomarkers of bone metastasis for an early diagnosis and a better tailoring of therapies for cancer patients.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , MicroRNAs/metabolismo , Metástase Neoplásica/genética , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Terapia de Alvo Molecular , Metástase Neoplásica/patologia , Microambiente Tumoral
4.
Physiol Rev ; 101(3): 797-855, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356915

RESUMO

Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis. Bone metastasis is a multistage process: long before the development of clinically detectable metastases, circulating tumor cells settle and enter a dormant state in normal vascular and endosteal niches present in the bone marrow, which provide immediate attachment and shelter, and only become active years later as they proliferate and alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction. The molecular mechanisms involved in mediating each of these steps are described, and we also explain how tumor cells interact with a myriad of interconnected cell populations in the bone marrow, including a rich vascular network, immune cells, adipocytes, and nerves. We discuss metabolic programs that tumor cells could engage with to specifically grow in bone. We also describe the progress and future directions of existing bone-targeted agents and report emerging therapies that have arisen from recent advances in our understanding of the pathophysiology of bone metastases. Finally, we discuss the value of bone turnover biomarkers in detection and monitoring of progression and therapeutic effects in patients with bone metastasis.


Assuntos
Neoplasias Ósseas/secundário , Osso e Ossos/patologia , Animais , Biomarcadores/metabolismo , Conservadores da Densidade Óssea/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Osso e Ossos/metabolismo , Denosumab/uso terapêutico , Humanos
5.
Br J Pharmacol ; 178(9): 1936-1954, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-31423566

RESUMO

Bone metastases are frequent complications in patients with advanced cancer, which can be fatal or may rapidly impede the quality of life of patients. Current treatments for patients with bone metastases are palliative. Therefore, a better understanding of the molecular mechanisms that precede the overt development of skeletal lesions could lead to better therapeutic interventions. In this review, we present evidence that non-coding RNAs (ncRNAs) such as long ncRNAs, microRNAs, and circular RNAs are emerging as master regulators of bone metastasis formation. We highlight potential opportunities for the therapeutic targeting of ncRNAs. Furthermore, we discuss the possibility that ncRNAs may be used as biomarkers in the context of bone metastases, which might provide insight for improving the response to current bone-targeting therapies. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.


Assuntos
Neoplasias Ósseas , MicroRNAs , RNA Longo não Codificante , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Remodelação Óssea , Humanos , MicroRNAs/genética , Qualidade de Vida
6.
Nat Commun ; 10(1): 1969, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036808

RESUMO

Long noncoding RNAs (lncRNAs) are emerging as regulators of fundamental biological processes. Here we report on the characterization of an intergenic lncRNA expressed in epithelial tissues which we termed EPR (Epithelial cell Program Regulator). EPR is rapidly downregulated by TGF-ß and its sustained expression largely reshapes the transcriptome, favors the acquisition of epithelial traits, and reduces cell proliferation in cultured mammary gland cells as well as in an animal model of orthotopic transplantation. EPR generates a small peptide that localizes at epithelial cell junctions but the RNA molecule per se accounts for the vast majority of EPR-induced gene expression changes. Mechanistically, EPR interacts with chromatin and regulates Cdkn1a gene expression by affecting both its transcription and mRNA decay through its association with SMAD3 and the mRNA decay-promoting factor KHSRP, respectively. We propose that EPR enables epithelial cells to control proliferation by modulating waves of gene expression in response to TGF-ß.


Assuntos
Estabilidade de RNA/genética , RNA Longo não Codificante/genética , Proteína Smad3/metabolismo , Transcriptoma/genética , Fator de Crescimento Transformador beta/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , RNA Longo não Codificante/efeitos dos fármacos
7.
Biochim Biophys Acta Gene Regul Mech ; 1860(3): 291-298, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28088441

RESUMO

Resveratrol (RESV) is a natural polyphenolic compound endowed with anti-inflammatory, anti-proliferative, as well as pro-apoptotic activities that make it a potential anti-tumor compound. Here we show that RESV counteracts the TGF-ß-induced Epithelial to Mesenchymal Transition (EMT) phenotype in mammary gland cells and affects the alternative exon usage of pre-mRNAs that encode crucial factors in adhesion and migration -including CD44, ENAH, and FGFR2- in a panel of immortalized and transformed mammary gland cells. RESV causes a shift from the mesenchymal-specific forms of these factors to the respective epithelial forms and increases the expression of the RNA-binding proteins KHSRP and hnRNPA1. From a mechanistic point of view, we show that the combined silencing of KHSRP and hnRNPA1 prevents the RESV-dependent inclusion of the epithelial-type exons in the Cd44 pre-mRNA. Our findings support an unexpected regulatory mechanism where RESV limits EMT by controlling gene expression at post-transcriptional level.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estilbenos/farmacologia , Animais , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Feminino , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Camundongos , Proteínas dos Microfilamentos , Proteínas de Ligação a RNA/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Resveratrol
8.
Cell Rep ; 16(4): 967-978, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27396342

RESUMO

Epithelial-to-mesenchymal transition (EMT) confers several traits to cancer cells that are required for malignant progression. Here, we report that miR-27b-3p-mediated silencing of the single-strand RNA binding protein KHSRP is required for transforming growth factor ß (TGF-ß)-induced EMT in mammary gland cells. Sustained KHSRP expression limits TGF-ß-dependent induction of EMT factors and cell migration, whereas its knockdown in untreated cells mimics TGF-ß-induced EMT. Genome-wide sequencing analyses revealed that KHSRP controls (1) levels of mature miR-192-5p, a microRNA that targets a group of EMT factors, and (2) alternative splicing of a cohort of pre-mRNAs related to cell adhesion and motility including Cd44 and Fgfr2. KHSRP belongs to a ribonucleoprotein complex that includes hnRNPA1, and the two proteins cooperate in promoting epithelial-type exon usage of select pre-mRNAs. Thus, TGF-ß-induced KHSRP silencing is central in a pathway leading to gene-expression changes that contribute to the cellular changes linked to EMT.


Assuntos
Processamento Alternativo/genética , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Interferência de RNA/fisiologia , Proteínas de Ligação a RNA/genética , Transativadores/genética , Fator de Crescimento Transformador beta/genética , Animais , Adesão Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Receptores de Hialuronatos/genética , Glândulas Mamárias Animais , Camundongos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
9.
Wiley Interdiscip Rev RNA ; 7(2): 227-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26708421

RESUMO

The single-stranded nucleic acid-binding protein KHSRP (KH-type splicing regulatory protein) modulates RNA life and gene expression at various levels. KHSRP controls important cellular functions as different as proliferation, differentiation, metabolism, and response to infectious agents. We summarize and discuss experimental evidence providing a potential link between changes in KHSRP expression/function and human diseases including neuromuscular disorders, obesity, type II diabetes, and cancer.


Assuntos
Diferenciação Celular , Suscetibilidade a Doenças , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Imunomodulação , Metabolismo dos Lipídeos , Desenvolvimento Muscular , Músculos/fisiologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neurônios/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Transativadores/química , Transativadores/genética , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia
10.
Proc Natl Acad Sci U S A ; 111(47): E5023-8, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385579

RESUMO

Long noncoding RNAs (lncRNAs) interact with protein factors to regulate different layers of gene expression transcriptionally or posttranscriptionally. Here we report on the functional consequences of the unanticipated interaction of the RNA binding protein K homology-type splicing regulatory protein (KSRP) with the H19 lncRNA (H19). KSRP directly binds to H19 in the cytoplasm of undifferentiated multipotent mesenchymal C2C12 cells, and this interaction favors KSRP-mediated destabilization of labile transcripts such as myogenin. AKT activation induces KSRP dismissal from H19 and, as a consequence, myogenin mRNA is stabilized while KSRP is repurposed to promote maturation of myogenic microRNAs, thus favoring myogenic differentiation. Our data indicate that H19 operates as a molecular scaffold that facilitates effective association of KSRP with myogenin and other labile transcripts, and we propose that H19 works with KSRP to optimize an AKT-regulated posttranscriptional switch that controls myogenic differentiation.


Assuntos
RNA Longo não Codificante/fisiologia , RNA Mensageiro/metabolismo , Animais , Linhagem Celular , Humanos , Ligação Proteica , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...