Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 13: 880195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910205

RESUMO

The global climate change and unfavourable abiotic and biotic factors are limiting agricultural productivity and therefore intensifying the challenges for crop scientists to meet the rising demand for global food supply. The introduction of applied genetics to agriculture through plant breeding facilitated the development of hybrid varieties with improved crop productivity. However, the development of new varieties with the existing gene pools poses a challenge for crop breeders. Genetic engineering holds the potential to broaden genetic diversity by the introduction of new genes into crops. But the random insertion of foreign DNA into the plant's nuclear genome often leads to transgene silencing. Recent advances in the field of plant breeding include the development of a new breeding technique called genome editing. Genome editing technologies have emerged as powerful tools to precisely modify the crop genomes at specific sites in the genome, which has been the longstanding goal of plant breeders. The precise modification of the target genome, the absence of foreign DNA in the genome-edited plants, and the faster and cheaper method of genome modification are the remarkable features of the genome-editing technology that have resulted in its widespread application in crop breeding in less than a decade. This review focuses on the advances in crop breeding through precision genome editing. This review includes: an overview of the different breeding approaches for crop improvement; genome editing tools and their mechanism of action and application of the most widely used genome editing technology, CRISPR/Cas9, for crop improvement especially for agronomic traits such as disease resistance, abiotic stress tolerance, herbicide tolerance, yield and quality improvement, reduction of anti-nutrients, and improved shelf life; and an update on the regulatory approval of the genome-edited crops. This review also throws a light on development of high-yielding climate-resilient crops through precision genome editing.

2.
Int J Radiat Biol ; 98(7): 1261-1276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34982642

RESUMO

PURPOSE: Sugarcane is an important cash crop and is affected by soil salinity. CoM 0265, a moderately salt-tolerant variety grown in the Maharashtra region (India), has low sugar content. The present study was aimed to employ gamma ray induced in vitro mutagenesis with repeated and step-wise selection in sugarcane for the isolation and physio-biochemical profiling of the selected salt-tolerant mutants for improved agronomic performance and sugar content. MATERIALS AND METHODS: Embryogenic callus culture of CoM 0265 variety was subjected to different doses of gamma radiation (10, 20, 30, 40, 50, and 60 Gy) followed by selection on NaCl containing media (50, 100, 150, 200, and 250 mM NaCl). The regenerated plantlets were hardened and selected based on ground nursery field trial on normal soil and saline field trial, in augmented block design for the selected mutant clones. Different physio-biochemical changes and activity of antioxidant enzymes were analyzed in the salt selected in vitro cultures and field-grown mutant clones. RESULTS: Dose optimization showed 40 Gy as the LD50 for gamma radiation and 150 mM NaCl as the dose for in vitro selection experiments. The selected mutant clones showed higher tissue water content (TWC), chlorophyll, and lower sodium content indicative of tolerance to salt stress. Catalase and peroxidase enzyme activities in the top visible dewlap (TVD) of the putative mutant clones were significantly higher than the control. The average yield and sucrose percent of the selected mutant clones were significantly higher than control checks in the saline field trial. Mutant clones M8457 and M8721 exhibited improved yield and commercial cane sugar over the parent control check varieties under saline field conditions. Catalase activity was strongly associated with TWC (r = 0.34) and chlorophyll content (r = 0.41) while it was negatively correlated with sodium ion content (r = -0.38). Peroxidase activity in TVD also showed a significant positive correlation with chlorophyll content (r = 0.42) and a negative correlation with sodium ion content (r=-0.39). The improvement in yield and CCS (t/ha) was strongly associated with the lower sodium ion content of the mutant clones (r=-0.54 and -0.53, respectively). CONCLUSIONS: Gamma ray induced mutants were isolated for improved sucrose and high yield in sugarcane var. CoM 0265. The results suggest that gamma radiation induced mutations result in physiological and metabolomic alterations for better growth and adaptation under in vitro and field stress conditions in sugarcane. The improved mutants can be further useful for commercial cultivation in saline areas.


Assuntos
Saccharum , Catalase/genética , Clorofila , Índia , Mutagênese , Saccharum/química , Saccharum/genética , Sódio , Cloreto de Sódio/farmacologia , Solo , Sacarose , Açúcares , Água
3.
J Biosci Bioeng ; 115(6): 658-67, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23321576

RESUMO

A novel bacterium was isolated from the soil of Ichalkaranji textile industrial area. Through 16S rRNA sequence matching and morphological observation it was identified as Lysinibacillus sp. RGS. This strain has ability to decolorize various industrial dyes among which, it showed complete decolorization and degradation of toxic sulfonated azo dye C.I. Remazol Red (at 30°C, pH 7.0, under static condition) with higher chemical oxygen demand (COD) reduction (92%) within 6 h of incubation. Various parameters like agitation, pH, temperature and initial dye concentrations were optimized to develop faster decolorization process. The supplementation of cheap co-substrates (e.g., extracts of agricultural wastes) could enhance the decolorization performance of Lysinibacillus sp. RGS. Induction in oxidoreductive enzymes presumably indicates involvement of these enzymes in the decolorization/degradation process. Analytical studies of the extracted metabolites confirmed the significant degradation of Remazol Red into various metabolites. The phytotoxicity assay (with respect to plants Phaseolus mungo and Sorghum vulgare) revealed that the degradation of Remazol Red produced nontoxic metabolites. Finally Lysinibacillus sp. RGS was applied to decolorize mixture of dyes and actual industrial effluent showing 87% and 72% decolorization (in terms of decrease in ADMI value) with 69% and 62% COD reduction within 48 h and 96 h, respectively. The foregoing result increases the applicability of the strain for the treatment of industrial wastewaters containing dye pollutants.


Assuntos
Bacillaceae/enzimologia , Corantes/metabolismo , Resíduos Industriais , Naftalenossulfonatos/metabolismo , Têxteis , Triazinas/metabolismo , Águas Residuárias , Poluentes Químicos da Água/metabolismo , Bacillaceae/crescimento & desenvolvimento , Bacillaceae/isolamento & purificação , Sequência de Bases , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Corantes/química , Corantes/toxicidade , Dados de Sequência Molecular , Naftalenossulfonatos/química , Naftalenossulfonatos/toxicidade , Triazinas/química , Triazinas/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...