Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0303742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38900734

RESUMO

Unravelling how energy metabolism and stress responses are regulated in human scalp hair follicles could reveal novel insights into the controls of hair growth and provide new targets to manage hair loss disorders. The Mitochondrial Pyruvate Carrier (MPC) imports pyruvate, produced via glycolysis, into the mitochondria, fuelling the TCA cycle. Previous work has shown that MPC inhibition promotes lactate generation, which activates murine epithelial hair follicle stem cells (eHFSCs). However, by pharmacologically targeting the MPC in short-term human hair follicle ex vivo organ culture experiments using UK-5099, we induced metabolic stress-responsive proliferative arrest throughout the human hair follicle epithelium, including within Keratin 15+ eHFSCs. Through transcriptomics, MPC inhibition was shown to promote a gene expression signature indicative of disrupted FGF, IGF, TGFß and WNT signalling, mitochondrial dysfunction, and activation of the integrated stress response (ISR), which can arrest cell cycle progression. The ISR, mediated by the transcription factor ATF4, is activated by stressors including amino acid deprivation and ER stress, consistent with MPC inhibition within our model. Using RNAScope, we confirmed the upregulation of both ATF4 and the highly upregulated ATF4-target gene ADM2 on human hair follicle tissue sections in situ. Moreover, treatment with the ISR inhibitor ISRIB attenuated both the upregulation of ADM2 and the proliferative block imposed via MPC inhibition. Together, this work reveals how the human hair follicle, as a complex and metabolically active human tissue system, can dynamically adapt to metabolic stress.


Assuntos
Folículo Piloso , Humanos , Folículo Piloso/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Estresse Fisiológico , Proliferação de Células , Mitocôndrias/metabolismo
2.
Int J Cosmet Sci ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488328

RESUMO

OBJECTIVE: Dandruff is characterised by the presence of perivascular leukocytes and mild inflammation; however, the immune microenvironment of dandruff-affected scalp skin and the potential changes to the hair follicle's (HF) physiological immune privilege (HF IP) remain unknown. Here, we characterised the HF immune microenvironment and immune privilege status in dandruff-affected scalp skin. METHODS: We assessed relevant key parameters in healthy versus dandruff-affected human scalp biopsies using quantitative immunohistomorphometry, laser capture microdissection, and RNA sequencing. RESULTS: The number of epidermal CD4+ and CD8+ T cells was increased in lesional dandruff scalp skin, while the number of MHC class II+ /CD1a+ Langerhans cells was decreased in the infundibulum. The number of intrafollicular and perifollicular CD4+ T cells and CD8+ T cells, perifollicular CD68+ macrophages, and tryptase+ mast cells remained unchanged. Interestingly, MHC class Ia and ß2-microglobulin protein expression were significantly increased specifically in the suprabulbar outer root sheath (ORS) compartment of dandruff-associated HFs. RNAseq analysis of laser capture micro-dissected suprabulbar ORS compartment revealed antigen presentation pathway as the top regulated canonical pathway, along with the upregulation of HF-IP genes such as HLA-C, HLA-DP, and TAP1, which are normally down-regulated in healthy HFs. Intrafollicular protein expression of known HF IP guardians (CD200 and α-MSH) and 'danger signals' (MICA and CXCL10) remained unaltered at the IP sites of dandruff lesional HFs compared to non-lesional and healthy HFs. Instead, the expression of macrophage migration inhibiting factor (MIF), another HF IP guardian, was reduced. CONCLUSION: Together, this work shows that dandruff is associated with epidermal T-cell infiltration and a weakened HF IP in the suprabulbar ORS of HFs in dandruff lesional scalp.


OBJECTIF: Les pellicules sont caractérisées par la présence de leucocytes périvasculaires et une légère inflammation. Cependant, le microenvironnement immunitaire de la peau du cuir chevelu affectée par les pellicules et les modifications potentielles du privilège immunitaire physiologique du follicule pileux (PI FP) restent inconnus. Ici, nous avons caractérisé le microenvironnement immunitaire du follicule pileux (FP) et l'état du privilège immunitaire de la peau du cuir chevelu affectée par les pellicules. MÉTHODES: Nous avons évalué les principaux paramètres pertinents dans des biopsies de cuir chevelu humain sain par rapport à ceux touchés par les pellicules, à l'aide d'une immuno-histomorphométrie quantitative, d'une microdissection au laser et d'un séquençage de l'ARN. RÉSULTATS: Le nombre de lymphocytes T CD4+ et CD8+ épidermiques a augmenté dans la peau du cuir chevelu atteinte de pellicules lésionnelles, tandis que le nombre de cellules de Langerhans du CMH de classe II+ /CD1a+ a diminué dans l'infundibulum. Le nombre de lymphocytes T CD4+ et de lymphocytes T CD8+ intrafolliculaires et périfolliculaires, de macrophages CD68+ périfolliculaires et de mastocytes tryptase+ est resté inchangé. Il est intéressant de noter que l'expression des protéines du CMH de classe Ia et de la ß2-microglobuline a augmenté de manière significative dans le compartiment suprabulbaire de la gaine radiculaire externe (GRE) en particulier des FP associés aux pellicules. L'analyse par séquençage ARN du compartiment suprabulbaire de la GRE micro-disséquée au laser a révélé que la voie de présentation de l'antigène était la voie canonique la plus régulée, ainsi que la régulation à la hausse des gènes PI-FP tels que HLA-C, HLA-DP et TAP1, qui sont normalement régulés à la baisse dans les FP sains. L'expression protéique intrafolliculaire des gardiens connus du PI FP (CD200 et α-MSH) et des « signaux de danger ¼ (MICA et CXCL10) est restée inchangée au niveau des sites du PI des FP à pellicules lésionnelles par rapport aux FP sans pellicules lésionnelles et sains. En revanche, l'expression du facteur d'inhibition de la migration des macrophages (MIF), un autre gardien du PI FP, a été réduite. CONCLUSION: L'ensemble de ces travaux montrent que les pellicules sont associées à une infiltration épidermique des lymphocytes T et à un affaiblissement du PI FP dans la GRE suprabulbaire des FP du cuir chevelu atteint de pellicules lésionnelles.

3.
Bioessays ; 43(10): e2100005, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34486144

RESUMO

Dandruff is a common scalp condition, which frequently causes psychological distress in those affected. Dandruff is considered to be caused by an interplay of several factors. However, the pathogenesis of dandruff remains under-investigated, especially with respect to the contribution of the hair follicle. As the hair follicle exhibits unique immune-modulatory properties, including the creation of an immunoinhibitory, immune-privileged milieu, we propose a novel hypothesis taking into account the role of the hair follicle. We hypothesize that the changes and imbalance of yeast and bacterial species, along with increasing proinflammatory sebum by-products, leads to the activation of immune response and inflammation. Hair follicle keratinocytes may then detect these changes in scalp microbiota resulting in the recruitment of leukocytes to the inflammation site. These changes in the scalp skin immune-microenvironment may impact hair follicle immune privilege status, which opens new avenues into exploring the role of the hair follicle in dandruff pathogenesis. Also see the video abstract here: https://youtu.be/mEZEznCYtNs.


Assuntos
Caspa , Dermatite Seborreica , Folículo Piloso , Humanos , Inflamação , Couro Cabeludo
4.
Exp Dermatol ; 30(5): 645-651, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548088

RESUMO

Human scalp hair follicles (HF) preferentially engage in glycolysis followed by lactate production in the presence of oxygen (i.e. the Warburg effect). Through the spatiotemporally controlled expression of key metabolic proteins, we hypothesise that the Warburg effect and other HF metabolic programmes are compartmentalised by region in order to regulate regional cell fate and phenotypes, such as epithelial stem cell quiescence in the bulge or keratinocyte proliferation in the hair matrix. We further propose that metabolic conditions in the HF are organised in accordance with the lactate shuttle, hypothesised to occur in other tissue systems and tumours, but never before described in the HF. Specifically, we argue that lactate is produced and exported by glycolytic GLUT1+ lower outer root sheath (ORS) keratinocytes. We further propose that lactate is then utilised by neighbouring highly proliferative matrix keratinocytes to fuel oxidative metabolism via MCT1-mediated uptake. Furthermore, as lactate has been described to be immunomodulatory, its production and accumulation could enhance immune tolerance in the HF bulb. Here we delineate how to experimentally probe this hypothesis, define major open questions and present preliminary immunohistological evidence in support of metabolic compartmentalisation and lactate shuttling. Overall, we argue that basic and translational hair research needs to rediscover the importance of lactate in human HF biology, well beyond its recognised role in murine HF epithelial stem cells, and should explore how HF metabolism can be therapeutically targeted to modulate hair growth and the immunological HF microenvironment as a novel strategy for managing hair loss disorders.


Assuntos
Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Alopecia/metabolismo , Proliferação de Células , Humanos , Queratinócitos/fisiologia , Células-Tronco/metabolismo
6.
Cell Div ; 15: 11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973917

RESUMO

BACKGROUND: XMU-MP-1 is an inhibitor of the Hippo pathway kinases MST1/2 and has been shown to promote the downstream activation of the pro-proliferative, pro-regenerative and anti-apoptotic transcriptional regulator YAP1. We tested whether XMU-MP-1 can activate YAP1 in a model human mini-organ, namely the hair follicle, to determine whether it can be pharmacologically exploited to promote regeneration in the hair follicle as a novel strategy to treat pathological hair loss disorders. RESULTS: XMU-MP-1 treatment inhibited MOB1 phosphorylation but did not increase active YAP1 in the hair follicle. Rather than promote proliferation, XMU-MP-1 serendipitously decreased the number of Ki-67+, EdU+ and phospho histone H3+ hair matrix keratinocytes and antagonised the cytotoxic effects of paclitaxel. CONCLUSIONS: XMU-MP-1 perturbs epithelial cell cycle progression in a model human mini-organ. This may arise as an off-target effect, especially when XMU-MP-1 has been described to strongly inhibit 21 additional kinases beyond MST1/2. Therefore, whilst these effects may be dependent on tissue context, researchers should exercise caution when interpreting the effects of XMU-MP-1, especially in tissues with actively proliferating cell populations.

7.
Skin Pharmacol Physiol ; 33(3): 110-118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32570235

RESUMO

BACKGROUND/AIMS: Vascular endothelial growth factor (VEGF), a key mediator of angiogenesis, plays a key role in physiological processes and is a major contributor to several diseases including cancer and psoriasis. Anti-VEGF therapies are widely used as cancer and ophthalmological treatments. There is some evidence that VEGF blockade may have utility in the management of psoriasis, although their potential has been largely unexplored. We hypothesized that a human skin organ culture could provide a stable ex vivo model in which the cutaneous microvascular network could be studied and experimentally manipulated. METHODS: Punch biopsies (3 mm) of skin, donated by healthy individuals (39-72 years old, n = 5), were incubated with monoclonal antibody (mAb) to human VEGF (bevacizumab) at doses based on data from animal and clinical studies. After 3-day culture, cell death and proliferation as well as vascular endothelial cell changes were assessed using quantitative immunohistomorphometry. RESULTS: Anti-VEGF mAb at 0.8 mg/mL induced a significant increase in cleaved caspase-3 expression in CD31+ cells (p < 0.05). None of the doses tested increased TUNEL or decreased Ki-67 expression in the basal layer of the epidermis, confirming the model's viability. In addition, the lactate dehydrogenase (LDH) assay showed no increase in LDH activity in treated samples compared to untreated control. The highest anti-VEGF mAb dose (0.8 mg/mL) induced an increase in TUNEL expression in the upper epidermis, which did not correlate with caspase-3 immunoreactivity. Further investigation revealed that anti-VEGF mAb did not change the expression of markers of terminal differentiation such as keratin 10, filaggrin, and involucrin, suggesting that VEGF depletion does not affect keratinocyte terminal differentiation. In contrast to the control group, levels of VEGF protein were undetectable in the culture supernatant of samples treated with 0.8 mg/mL of anti-VEGF mAb, suggesting sufficient dose. CONCLUSION: Our pilot study provides the first evidence that anti-VEGF therapy promotes endothelial cell apoptosis in human skin ex vivo. Our pragmatic human skin organ culture assay offers a valuable tool for future preclinical endothelial cell and translational microvascular network/anti-angiogenesis research in human skin.


Assuntos
Inibidores da Angiogênese/farmacologia , Bevacizumab/farmacologia , Células Endoteliais/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Pele/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Adulto , Idoso , Apoptose/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Células Endoteliais/metabolismo , Proteínas Filagrinas , Humanos , Microvasos/efeitos dos fármacos , Pessoa de Meia-Idade , Projetos Piloto , Pele/irrigação sanguínea , Pele/metabolismo , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
EMBO Mol Med ; 11(10): e11031, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31512803

RESUMO

Taxanes are a leading cause of severe and often permanent chemotherapy-induced alopecia. As the underlying pathobiology of taxane chemotherapy-induced alopecia remains poorly understood, we investigated how paclitaxel and docetaxel damage human scalp hair follicles in a clinically relevant ex vivo organ culture model. Paclitaxel and docetaxel induced massive mitotic defects and apoptosis in transit amplifying hair matrix keratinocytes and within epithelial stem/progenitor cell-rich outer root sheath compartments, including within Keratin 15+ cell populations, thus implicating direct damage to stem/progenitor cells as an explanation for the severity and permanence of taxane chemotherapy-induced alopecia. Moreover, by administering the CDK4/6 inhibitor palbociclib, we show that transit amplifying and stem/progenitor cells can be protected from paclitaxel cytotoxicity through G1 arrest, without premature catagen induction and additional hair follicle damage. Thus, the current study elucidates the pathobiology of taxane chemotherapy-induced alopecia, highlights the paramount importance of epithelial stem/progenitor cell-protective therapy in taxane-based oncotherapy, and provides preclinical proof-of-principle in a healthy human (mini-) organ that G1 arrest therapy can limit taxane-induced tissue damage.


Assuntos
Alopecia/induzido quimicamente , Alopecia/prevenção & controle , Antineoplásicos/efeitos adversos , Hidrocarbonetos Aromáticos com Pontes/efeitos adversos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Células-Tronco/efeitos dos fármacos , Taxoides/efeitos adversos , Docetaxel/efeitos adversos , Humanos , Queratinócitos/efeitos dos fármacos , Modelos Teóricos , Técnicas de Cultura de Órgãos , Paclitaxel/efeitos adversos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia
9.
Biotechniques ; 65(2): 97-100, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30091388

RESUMO

RNA synthesis can be detected by 5-ethynyl uridine (EU) incorporation and click chemistry. Despite identifying a fundamental functional process, this technique has yet to be widely applied to complex human tissue systems. By incorporating EU into human hair follicle (HF) organs cultured ex vivo, nascent RNA synthesis was detected in situ. EU differentially incorporated across the HF epithelium. Interestingly, RNA synthesis did not correlate with protein synthesis, proliferation or epithelial progenitor cell marker expression. By treating human HFs with the cytotoxic cell cycle inhibitor (R)-CR8, which inhibits transcriptional regulators CDK7 and CDK9, it was further shown that this technique can be used to sensitively detect changes in global RNA synthesis in situ. Together, this work delineates new insights into nascent RNA synthesis within a human (mini)- organ and describes a novel read-out parameter that will enrich future ex vivo human tissue research studies.


Assuntos
Química Click , Folículo Piloso/metabolismo , Microscopia de Fluorescência , Técnicas de Cultura de Órgãos , RNA/análise , Uridina/análogos & derivados , Proliferação de Células , Química Click/métodos , Regulação da Expressão Gênica , Folículo Piloso/citologia , Humanos , Microscopia de Fluorescência/métodos , Técnicas de Cultura de Órgãos/métodos , RNA/genética , Transcrição Gênica , Uridina/genética
10.
Sci Rep ; 7(1): 15197, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123134

RESUMO

Human scalp hair follicles (hHF) harbour several epithelial stem (eHFSC) and progenitor cell sub-populations organised into spatially distinct niches. However, the constitutive cell cycle activity of these niches remains to be characterized in situ. Therefore, the current study has studied these characteristics of keratin 15+ (K15), CD200+ or CD34+ cells within anagen VI hHFs by immunohistomorphometry, using Ki-67 and 5-ethynyl-2'-deoxyuridine (EdU). We quantitatively demonstrate in situ the relative cell cycle inactivity of the CD200+/K15+ bulge compared to other non-bulge CD34+ and K15+ progenitor compartments and found that in each recognized eHFSC/progenitor niche, proliferation associates negatively with eHFSC-marker expression. Furthermore, we also show how prostaglandin D2 (PGD2), which is upregulated in balding scalp, differentially impacts on the proliferation of distinct eHFSC populations. Namely, 24 h organ-cultured hHFs treated with PGD2 displayed reduced Ki-67 expression and EdU incorporation in bulge resident K15+ cells, but not in supra/proximal bulb outer root sheath K15+ progenitors. This study emphasises clear differences between the cell cycle behaviour of spatially distinct stem/progenitor cell niches in the hHF, and demonstrates a possible link between PGD2 and perturbed proliferation dynamics in epithelial stem cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Epiteliais/fisiologia , Folículo Piloso/citologia , Prostaglandina D2/metabolismo , Células-Tronco/fisiologia , Biomarcadores/análise , Células Cultivadas , Células Epiteliais/química , Células Epiteliais/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Células-Tronco/química , Células-Tronco/efeitos dos fármacos
11.
Eur J Cell Biol ; 96(6): 632-641, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28413121

RESUMO

Human hair follicle (HF) growth and hair shaft formation require terminal differentiation-associated cell cycle arrest of highly proliferative matrix keratinocytes. However, the regulation of this complex event remains unknown. CIP/KIP family member proteins (p21CIP1, p27KIP1 and p57KIP2) regulate cell cycle progression/arrest, endoreplication, differentiation and apoptosis. Since they have not yet been adequately characterized in the human HF, we asked whether and where CIP/KIP proteins localise in the human hair matrix and pre-cortex in relation to cell cycle activity and HF-specific epithelial cell differentiation that is marked by keratin 85 (K85) protein expression. K85 expression coincided with loss or reduction in cell cycle activity markers, including in situ DNA synthesis (EdU incorporation), Ki-67, phospho-histone H3 and cyclins A and B1, affirming a post-mitotic state of pre-cortical HF keratinocytes. Expression of CIP/KIP proteins was found abundantly within the proliferative hair matrix, concomitant with a role in cell cycle checkpoint control. p21CIP1, p27KIP1 and cyclin E persisted within post-mitotic keratinocytes of the pre-cortex, whereas p57KIP2 protein decreased but became nuclear. These data imply a supportive role for CIP/KIP proteins in maintaining proliferative arrest, differentiation and anti-apoptotic pathways, promoting continuous hair bulb growth and hair shaft formation in anagen VI. Moreover, post-mitotic hair matrix regions contained cells with enlarged nuclei, and DNA in situ hybridisation showed cells that were >2N in the pre-cortex. This suggests that CIP/KIP proteins might counterbalance cyclin E to control further rounds of DNA replication in a cell population that has a propensity to become tetraploid. These data shed new light on the in situ-biography of human hair matrix keratinocytes on their path of active cell cycling, arrest and terminal differentiation, and showcase the human HF as an excellent, clinically relevant model system for cell cycle physiology research of human epithelial cells within their natural tissue habitat.


Assuntos
Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Folículo Piloso/crescimento & desenvolvimento , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/metabolismo , Humanos , Queratinócitos/metabolismo
12.
Exp Dermatol ; 25(9): 663-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27094702

RESUMO

The cell cycle is of major importance to human hair follicle (HF) biology. Not only is continuously active cell cycling required to facilitate healthy hair growth in anagen VI HFs, but perturbations in the cell cycle are likely to be of significance in HF pathology (i.e. in scarring, non-scarring, chemotherapy-induced and androgenic alopecias). However, cell cycle dynamics of the human hair follicle (HF) are poorly understood in contrast to what is known in mouse. The current Methods Review aims at helping to close this gap by presenting a primer that introduces immunohistological/immunofluorescent techniques to study the cell cycle in the human HF. Moreover, this primer encourages the exploitation of the human HF as a powerful and clinically relevant tool to investigate mammalian cell cycle biology in situ. To achieve this, we describe methods to study markers of general 'proliferation' (nuclei count, Ki-67 expression), apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labelling, cleaved caspase 3), mitosis (phospho-histone H3, 'pS780'), DNA synthesis (5-ethynyl-2'-deoxyuridine) and cell cycle regulation (cyclins) in the human HF. In addition, we provide specific examples of dual immunolabelling for instructive cell cycle analyses and for investigating the cell cycle behaviour of specific HF keratinocyte subpopulations, such as keratin 15+ stem/progenitor cells.


Assuntos
Folículo Piloso/citologia , Proliferação de Células , Folículo Piloso/fisiologia , Humanos
13.
Exp Dermatol ; 24(6): 462-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25808706

RESUMO

In the murine hair follicle (HF), the transcription factors LHX2 and SOX9 are implicated in epithelial hair follicle stem cell (eHFSC) self-renewal and the maintenance of eHFSC niche characteristics. However, the exact expression patterns of LHX2 and SOX9 in the human HF are unclear. Therefore, we have quantitatively mapped the localisation of known human eHFSC markers keratin 15 (K15) and keratin 19 (K19) in the outer root sheath (ORS) of male occipital scalp anagen HFs and related this to the localisation of LHX2 and SOX9 protein expression. As expected, K15(+) and K19(+) cells represented two distinct progenitor cell populations in the bulge and in the proximal bulb ORS (pbORS). Interestingly, cell fluorescence for K19 was significantly stronger within the pbORS versus the bulge, and vice versa for K15, describing a hitherto unrecognised differential expression pattern. LHX2 and SOX9 expressing cells were distributed throughout the ORS, including the bulge, but were not restricted to it. SOX9 expression was most prominent in the ORS immediately below the human bulge, whereas LHX2(+) cells were similarly distributed between the sub-bulge and pbORS, that is compartments not enriched with quiescent eHFSCs. During catagen development, the intensity of LHX2 and SOX9 protein expression increased in the proximal HF epithelium. Double immunostaining showed that the majority of SOX9(+) cells in the human anagen HF epithelium did not co-express K15, K19 or LHX2. This expression profile suggests that LHX2 and SOX9 highlight distinct epithelial progenitor cell populations, in addition to K15(+) or K19(+) cells, that could play an important role in the maintenance of the human HF epithelium.


Assuntos
Células Epiteliais/metabolismo , Folículo Piloso/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Biomarcadores/metabolismo , Mapeamento Cromossômico , Células Epiteliais/citologia , Regulação da Expressão Gênica , Folículo Piloso/citologia , Humanos , Queratina-15/genética , Queratina-15/metabolismo , Queratina-19/genética , Queratina-19/metabolismo , Proteínas com Homeodomínio LIM/genética , Masculino , Fatores de Transcrição SOX9/genética , Células-Tronco/citologia , Fatores de Transcrição/genética
14.
Bioessays ; 36(5): 513-25, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24665045

RESUMO

Epithelial hair follicle stem cells (eHFSCs) are required to generate, maintain and renew the continuously cycling hair follicle (HF), supply cells that produce the keratinized hair shaft and aid in the reepithelialization of injured skin. Therefore, their study is biologically and clinically important, from alopecia to carcinogenesis and regenerative medicine. However, human eHFSCs remain ill defined compared to their murine counterparts, and it is unclear which murine eHFSC markers really apply to the human HF. We address this by reviewing current concepts on human eHFSC biology, their immediate progeny and their molecular markers, focusing on Keratin 15 and 19, CD200, CD34, PHLDA1, and EpCAM/Ber-EP4. After delineating how human eHFSCs may be selectively targeted experimentally, we close by defining as yet unmet key challenges in human eHFSC research. The ultimate goal is to transfer emerging concepts from murine epithelial stem cell biology to human HF physiology and pathology.


Assuntos
Células Epiteliais/citologia , Folículo Piloso/citologia , Células-Tronco/citologia , Pesquisa Translacional Biomédica , Animais , Folículo Piloso/anatomia & histologia , Humanos , Modelos Animais , Transplante de Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...