Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 10(3): 1238-50, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24239677

RESUMO

Three-dimensional (3-D) open-channeled scaffolds of biopolymers are a promising candidate matrix for tissue engineering. When scaffolds have the capacity to deliver bioactive molecules the potential for tissue regeneration should be greatly enhanced. In order to improve drug-delivery capacity, we exploit 3-D poly(lactic acid) (PLA) scaffolds by creating microporosity within the scaffold network. Macroporous channeled PLA with a controlled pore configuration was obtained by a robotic dispensing technique. In particular, a room temperature ionic liquid (RTIL) bearing hydrophilic counter-anions, such as OTf and Cl, was introduced to the biopolymer solution at varying ratios. The RTIL-biopolymer slurry was homogenized by ultrasonication, and then solidified through the robotic dispensing process, during which the biopolymer and RTIL formed a bicontinuous interpenetrating network. After ethanol wash-out treatment the RTIL was completely removed to leave highly microporous open channels throughout the PLA network. The resultant pore size was observed to be a few micrometers (average 2.43 µm) and microporosity was determined to be ∼ 70%. The microporous surface was also shown to favor initial cell adhesion, stimulating cell anchorage on the microporous structure. Furthermore, in vivo tissue responses assessed in rat subcutaneous tissue revealed good tissue compatibility, with minimal inflammatory reactions, while gathering a larger population of fibroblastic cells than the non-microporous scaffolds, and even facilitating invasion of the cells within the microporous structure. The efficacy of the micropore networks generated within the 3-D scaffolds in loading and releasing therapeutic molecules was addressed using antibiotic sodium ampicillin and protein cytochrome C as model drugs. The microporous scaffolds exhibited significantly enhanced drug loading capacity: 4-5 times increase in ampicillin and 9-10 times increase in cytochrome C compared to the non-microporous scaffolds. The release of ampicillin loaded within the microporous scaffolds was initially fast (∼ 85% for 1 week), and was then slowed down, showing a continual release up to a month. On the other hand, cytochrome C was shown to release in a highly sustainable manner over a month, without showing an initial burst release effect. This study provides a novel insight into the generation of 3-D biopolymer scaffolds with high performance in loading and delivery of biomolecules, facilitated by the creation of microporous channels through the scaffold network. The capacity to support tissue cells while in situ delivering drug molecules makes the current scaffolds potentially useful for therapeutic tissue engineering.


Assuntos
Biopolímeros/química , Sistemas de Liberação de Medicamentos , Teste de Materiais/métodos , Alicerces Teciduais/química , Ampicilina/farmacologia , Animais , Citocromos c/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Líquidos Iônicos/química , Ácido Láctico/química , Masculino , Camundongos , Poliésteres , Polímeros/química , Porosidade , Ratos Sprague-Dawley , Robótica , Temperatura
2.
J Tissue Eng ; 3(1): 2041731412443530, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22511995

RESUMO

Nanofibrous structures developed by electrospinning technology provide attractive extracellular matrix conditions for the anchorage, migration, and differentiation of tissue cells, including those responsible for the regeneration of hard tissues. Together with the ease of set up and cost-effectiveness, the possibility to produce nanofibers with a wide range of compositions and morphologies is the merit of electrospinning. Significant efforts have exploited the development of bone regenerative nanofibers, which includes tailoring of composite/hybrid compositions that are bone mimicking and the surface functionalization such as mineralization. Moreover, by utilizing bioactive molecules such as adhesive proteins, growth factors, and chemical drugs, in concert with the nanofibrous matrices, it is possible to provide artificial materials with improved cellular responses and therapeutic efficacy. These studies have mainly focused on the regulation of stem cell behaviors for use in regenerative medicine and tissue engineering. While there are some challenges in achieving controllable delivery of bioactive molecules and complex-shaped three-dimensional scaffolds for tissue engineering, the electrospun nanofibrous matrices can still have a beneficial impact in the area of hard-tissue regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...