RESUMO
BACKGROUND: Venezuelan equine encephalitis virus (VEEV) is an alphavirus in the family Togaviridae. VEEV causes a bi-phasic illness in mice where primary replication in lymphoid organs is followed by entry into the central nervous system (CNS). The CNS phase of infection is marked by encephalitis and large scale neuronal death ultimately resulting in death. Molecular determinants of VEEV neurovirulence are not well understood. In this study, host gene expression response to highly neurovirulent VEEV (V3000 strain) infection was compared with that of a partially neurovirulent VEEV (V3034 strain) to identify host factors associated with VEEV neurovirulence. METHODS: Whole genome microarrays were performed to identify the significantly modulated genes. Microarray observations were classified into three categories i.e., genes that were similarly modulated against both V3000 and V3034 infections, and genes that were uniquely modulated in infection with V3034 or V3000. Histologic sections of spleen and brain were evaluated by hematoxylin and eosin stains from all the mice. RESULTS: V3000 infection induced a greater degree of pathology in both the spleen and brain tissue of infected mice compared to V3034 infection. Genes commonly modulated in the spleens after V3000 or V3034 infection were associated with innate immune responses, inflammation and antigen presentation, however, V3000 induced a gene response profile that suggests a stronger inflammatory and apoptotic response compared to V3034. In the brain, both the strains of VEEV induced an innate immune response reflected by an upregulation of the genes involved in antigen presentation, interferon response, and inflammation. Similar to the spleen, V3000 was found to induce a stronger inflammatory response than V3034 in terms of induction of pro-inflammatory genes and associated pathways. Ccl2, Ccl5, Ccl6, and Ly6 were uniquely upregulated in V3000 infected mouse brains and correlated with the extensive inflammation observed in the brain. CONCLUSION: The common gene profile identified from V3000 and V3034 exposure can help in understanding a generalized host response to VEEV infection. Inflammatory genes that were uniquely identified in mouse brains with V3000 infection will help in better understanding the lethal neurovirulence of VEEV. Future studies are needed to explore the roles played by the genes identified in VEEV induced encephalitis.
Assuntos
Vírus da Encefalite Equina Venezuelana/patogenicidade , Encefalomielite Equina Venezuelana/virologia , Interações Hospedeiro-Patógeno/genética , Animais , Apresentação de Antígeno , Encéfalo/patologia , Encéfalo/virologia , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos , Baço/patologia , Baço/virologia , Regulação para CimaRESUMO
BACKGROUND: We have previously explored a therapeutic strategy for specifically targeting the profibrotic activity of IL-13 during experimental pulmonary fibrosis using a fusion protein comprised of human IL-13 and a mutated form of Pseudomonas aeruginosa exotoxin A (IL13-PE) and observed that the intranasal delivery of IL13-PE reduced bleomycin-induced pulmonary fibrosis through its elimination of IL-13-responsive cells in the lung. The aim of the present study was to determine whether the presence of an immune response to P. aeruginosa and/or its exotoxin A (PE) would diminish the anti-fibrotic properties of IL13-PE. METHODOLOGY/PRINCIPAL FINDINGS: Fourteen days after P. aeruginosa infection, C57BL/6 mice were injected with bleomycin via the intratracheal route. Other groups of mice received 4 doses of saline or IL13-PE by either intranasal or intraperitoneal application, and were challenged i.t. with bleomycin 28 days later. At day 21 after bleomycin, all mice received either saline vehicle or IL13-PE by the intranasal route and histopatological analyses of whole lung samples were performed at day 28 after bleomycin. Intrapulmonary P. aeruginosa infection promoted a neutralizing IgG2A and IgA antibody response in BALF and serum. Surprisingly, histological analysis showed that a prior P. aeruginosa infection attenuated the development of bleomycin-induced pulmonary fibrosis, which was modestly further attenuated by the intranasal administration of IL13-PE. Although prior intranasal administration of IL13-PE failed to elicit an antibody response, the systemic administration of IL13-PE induced a strong neutralizing antibody response. However, the prior systemic sensitization of mice with IL13-PE did not inhibit the anti-fibrotic effect of IL13-PE in fibrotic mice. CONCLUSIONS: Thus, IL13-PE therapy in pulmonary fibrosis works regardless of the presence of a humoral immune response to Pseudomonas exotoxin A. Interestingly, a prior infection with P. aeruginosa markedly attenuated the pulmonary fibrotic response suggesting that the immune elicitation by this pathogen exerts anti-fibrotic effects.
Assuntos
ADP Ribose Transferases/farmacologia , Toxinas Bacterianas/farmacologia , Exotoxinas/farmacologia , Exotoxinas/uso terapêutico , Imunotoxinas/uso terapêutico , Interleucina-13/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Fatores de Virulência/farmacologia , ADP Ribose Transferases/imunologia , Animais , Toxinas Bacterianas/imunologia , Bleomicina/toxicidade , Exotoxinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Proteínas Recombinantes de Fusão , Fatores de Virulência/imunologia , Exotoxina A de Pseudomonas aeruginosaRESUMO
BACKGROUND: Neurovirulent Venezuelan equine encephalitis virus (VEEV) causes lethal encephalitis in equines and is transmitted to humans by mosquitoes. VEEV is highly infectious when transmitted by aerosol and has been developed as a bio-warfare agent, making it an important pathogen to study from a military and civilian standpoint. Molecular mechanisms of VEE pathogenesis are poorly understood. To study these, the gene expression profile of VEEV infected mouse brains was investigated. Changes in gene expression were correlated with histological changes in the brain. In addition, a molecular framework of changes in gene expression associated with progression of the disease was studied. RESULTS: Our results demonstrate that genes related to important immune pathways such as antigen presentation, inflammation, apoptosis and response to virus (Cxcl10, CxCl11, Ccl5, Ifr7, Ifi27 Oas1b, Fcerg1,Mif, Clusterin and MHC class II) were upregulated as a result of virus infection. The number of over-expressed genes (>1.5-fold level) increased as the disease progressed (from 197, 296, 400, to 1086 at 24, 48, 72 and 96 hours post infection, respectively). CONCLUSION: Identification of differentially expressed genes in brain will help in the understanding of VEEV-induced pathogenesis and selection of biomarkers for diagnosis and targeted therapy of VEEV-induced neurodegeneration.