Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 29(24): 4284-4290.e2, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31813610

RESUMO

Humans have used yeasts to make cheese and kefir for millennia, but the ability to ferment the milk sugar lactose is found in only a few yeast species, of which the foremost is Kluyveromyces lactis [1]. Two genes, LAC12 (lactose permease) and LAC4 (lactase), are sufficient for lactose uptake and hydrolysis to glucose and galactose [2]. Here, we show that these genes have a complex evolutionary history in the genus Kluyveromyces that is likely the result of human activity during domestication. We show that the ancestral Lac12 was bifunctional, able to import both lactose and cellobiose into the cell. These disaccharides were then hydrolyzed by Lac4 in the case of lactose or Cel2 in the case of cellobiose. A second cellobiose transporter, Cel1, was also present ancestrally. In the K. lactis lineage, the ancestral LAC12 and LAC4 were lost and a separate upheaval in the sister species K. marxianus resulted in loss of CEL1 and quadruplication of LAC12. One of these LAC12 genes became neofunctionalized to encode an efficient lactose transporter capable of supporting fermentation, specifically in dairy strains of K. marxianus, where it formed a LAC4-LAC12-CEL2 gene cluster, although another remained a cellobiose transporter. Then, the ability to ferment lactose was acquired very recently by K. lactis var. lactis by introgression of LAC12 and LAC4 on a 15-kb subtelomeric region from a dairy strain of K. marxianus. The genomic history of the LAC genes shows that strong selective pressures were imposed on yeasts by early dairy farmers.


Assuntos
Kluyveromyces/genética , Kluyveromyces/metabolismo , Lactose/genética , Celobiose/genética , Celobiose/metabolismo , Domesticação , Evolução Molecular , Fermentação/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Genoma Fúngico/genética , Genótipo , Lactose/metabolismo , Família Multigênica/genética , Fenótipo , Filogenia
2.
Front Microbiol ; 9: 3330, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687296

RESUMO

In yeasts, proteins of the Major Superfamily Transporter selectively bind and allow the uptake of sugars to permit growth on varied substrates. The genome of brewer's yeast, Saccharomyces cerevisiae, encodes multiple hexose transporters (Hxt) to transport glucose and other MFS proteins for maltose, galactose, and other monomers. For sugar uptake, the dairy yeast, Kluyveromyces lactis, uses Rag1p for glucose, Hgt1 for glucose and galactose, and Lac12 for lactose. In the related industrial species Kluyveromyces marxianus, there are four genes encoding Lac12-like proteins but only one of them, Lac12, can transport lactose. In this study, which initiated with efforts to investigate possible functions encoded by the additional LAC12 genes in K. marxianus, a genome-wide survey of putative MFS sugar transporters was performed. Unexpectedly, it was found that the KHT and the HGT genes are present as tandem arrays of five to six copies, with the precise number varying between isolates. Heterologous expression of individual genes in S. cerevisiae and mutagenesis of single and multiple genes in K. marxianus was performed to establish possible substrates for these transporters. The focus was on the sugar galactose since it was already reported in K. lactis that this hexose was a substrate for both Lac12 and Hgt1. It emerged that three of the four copies of Lac12, four Hgt-like proteins and one Kht-like protein have some capacity to transport galactose when expressed in S. cerevisiae and inactivation of all eight genes was required to completely abolish galactose uptake in K. marxianus. Analysis of the amino acid sequence of all known yeast galactose transporters failed to identify common residues that explain the selectivity for galactose. Instead, the capacity to transport galactose has arisen three different times in K. marxianus via polymorphisms in proteins that are probably ancestral glucose transporters. Although, this is analogous to S. cerevisiae, in which Gal2 is related to glucose transporters, there are not conserved amino acid changes, either with Gal2, or among the K. marxianus galactose transporters. The data highlight how gene duplication and functional diversification has provided K. marxianus with versatile capacity to utilise sugars for growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...