Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 632(Pt A): 196-215, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36413945

RESUMO

In the present study, the excellent photocatalytic activity of n-ZnO/n-SnO2 heterojunction integrated with reduced graphene oxide nanosheets was explored towards the elimination of different organic pollutants viz. p-bromophenol, bisphenol A, and ofloxacin from water. n-ZnO/n-SnO2 heterojunction was decorated with a different weight percentage of reduced graphene oxide via a facile refluxing method. The structural, morphological and optical properties of the as-prepared n-ZnO/n-SnO2 heterojunction-reduced graphene oxide nanocomposites were investigated systematically. XRD, Raman and FT-IR confirmed the hexagonal wurtzite and tetragonal rutile structures of ZnO and SnO2 crystals in different nanocomposites. Cube and spherical-shaped surface structures were demonstrated by TEM and FE-SEM analysis for ZnO and SnO2, respectively. The maximum photocatalytic productivity of nanocomposite with 5 wt% reduced graphene oxide was observed at about 98.64 % and 98.50 % towards the elimination of p-bromophenol and bisphenol A, respectively after 180 min exposure of UV light. Similarly, this productivity was also observed at about 99.13 % towards the elimination of ofloxacin after 120 min irradiation of UV light. The outstanding photocatalytic activity of nanocomposite with 5 wt% reduced graphene oxide has been proven by the presence of homotypic n-ZnO/n-SnO2 and reduced graphene oxide nanosheets owing to the synergistic effect amongst them resulting in remarkable separation of charge carriers, which is responsible for the larger rate of reactive oxygen species generation and enhanced photodegradation of p-bromophenol, bisphenol A and ofloxacin. In this study, the results illustrated that the photocatalytic degradation of p-bromophenol, bisphenol A and ofloxacin using n-ZnO/n-SnO2 heterojunction-reduced graphene oxide nanocomposites is predominantly based on the hydroxyl radicals and superoxide radical anion as main reactive oxygen species as compared to 1O2. A reasonable photodegradation mechanism using prepared nanocomposites under investigation has also been proposed.


Assuntos
Antibacterianos , Óxido de Zinco , Espécies Reativas de Oxigênio , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Ofloxacino
2.
J Hazard Mater ; 424(Pt A): 127332, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34607025

RESUMO

The widespread existence of different organic contaminants mostly phenolic compounds, organic dyes and antibiotics in water bodies initiated by the various industrial wastes that raised great scientific concern and public awareness as well recently owing to their prospective capability to spread these contaminants resistant gene and pose hazard to human. In the present study, a series of nanostructured ZnO-CdO incorporated with reduced graphene oxide (ZCG nanocomposites) were successfully synthesized by a simple refluxing method and characterized by using the X-ray diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, photoluminescence spectroscopy, field emission-scanning microscope (FE-SEM) and UV-visible diffused reflectance spectroscopy (DRS) for the photocatalytic degradation of bisphenol A (BPA), thymol blue (ThB) and ciprofloxacin (CFn) with illumination of UV light. The maximum degradation and mineralization of BPA, ThB and CFn was achieved around 98.5%, 98.38% and 99.28% over the ZCG-5 nanocomposite photocatalyst after UV light irradiation for 180 min, 120 min and 75 min, respectively. The superior photocatalytic activity of ZCG-5 ascribed to enhance adsorption capacity, effective separation of charge carriers consequential for the production of more ROS after incorporation of RGO nanosheets with ZnO-CdO in photocatalyst. The conceivable photocatalytic degradation mechanism of BPA, ThB and CFn was elucidated through ROS identification and the assessment of photocatalyst stability by reusability, EEO (kwh/m3order) and UV light dose (mJ/cm2) were evaluated. The plausible photocatalytic degradation pathways were proposed for the degradation of BPA, ThB and CFn via GC-MS analysis. The present work investigates the efficient removal of BPA, ThB and CFn using ZCG nanocomposites as photocatalyst.


Assuntos
Nanocompostos , Óxido de Zinco , Compostos Benzidrílicos , Catálise , Ciprofloxacina , Grafite , Humanos , Fenóis , Estudos Prospectivos , Espectroscopia de Infravermelho com Transformada de Fourier , Timolftaleína/análogos & derivados
3.
J Hazard Mater ; 406: 124300, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33139108

RESUMO

Persistent organic pollutants (mainly aromatic compounds) such as bromophenol and diethyl phthalate are dangerous and act as primary contaminants in aqueous system. In this study, efficient reduced graphene oxide zinc oxide (rGO-ZnO) nanocomposites were synthesized by using a simple and facile method for photocatalytic degradation of 4-Bromophenol (4-BP) and diethyl phthalate (DEP). The rGO-ZnO (rGZ) nanocomposites (NCs) with different weight ratio of rGO and ZnO (coded as rGZ-1, rGZ-2, rGZ-5 and rGZ-10) were synthesized via high temperature refluxing method. The crystalline structure and phase, surface morphological study, optical properties, crystal defects and existence of functional groups in rGZ NCs were studied by X-ray diffraction (XRD), field-emission-scanning electron microscope (FE-SEM), UV-Visible diffuse reflectance spectroscopy (DRS), Raman spectroscopy and FT-IR analysis, respectively. The elimination of 4-BP and DEP from water by UV-light exposure was considered to estimate the photocatalytic efficiency of prepared rGZ NCs. The maximum elimination of 4-BP and DEP via photodegradation (advanced oxidation process) was found about 99.04% and 98.63% over rGZ NCs after 180 min UV irradiation, respectively. The photodegradation study was examined by using high performance liquid chromatography (HPLC) technique. This study confirms the efficient photocatalytic activity of rGZ-5 towards degradation of 4-BP and DEP. Finally, degradation mechanism has been proposed for the degradation of 4-BP and DEP.

4.
RSC Adv ; 9(54): 31316-31324, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35527961

RESUMO

CdO : ZnO hexagonal particles were synthesized by a sol-gel precipitation method at different annealing temperatures. A mixed crystal phase of cubic and wurtzite structures was observed from X-ray diffraction patterns. The micrographs showed hexagonal shapes of the CdO : ZnO nanocomposites particles. The energy dispersive X-ray spectroscopy mapping images showed a uniform distribution of the Cd and Zn. The CdO : ZnO nanocomposite pallet annealed at 550 °C has an electrical resistance of 0.366 kΩ at room temperature. The nanocomposites showed an excellent sensing response against oxygen gas with a sensing response of 47% at 200 °C for the CdO : ZnO particles annealed at 550 °C. The sensor response and recovery times were found to be 43s and 45s, respectively. The sensor response was due to the sorption of oxygen ions on the surfaces of the CdO : ZnO hexagonal particles.

5.
J Colloid Interface Sci ; 487: 378-387, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27810506

RESUMO

Mixed oxides of zinc and cadmium with different proportions were deposited on ordinary glass substrates using the sol-gel spin coating method under optimized deposition conditions using zinc acetate dihydrate and cadmium acetate dihydrate as precursors. X-ray diffraction patterns confirmed the polycrystalline nature of the films. A combination of cubic CdO and hexagonal wurtzite ZnO phases was observed. The oxidation states of Zn, Cd and O in the deposited films were determined by X-ray photoelectron spectroscopic studies. Surface morphology was studied by scanning electron microscopy and atomic force microscopy. The compositional analysis of the thin films was studied by secondary ion mass spectroscopy. The transmittance of the thin films was measured in the range 300-800nm and the optical bandgap was calculated using Tauc's plot method. The bandgap decreased from 3.15eV to 2.15eV with increasing CdO content. The light emission properties of the ZnO:CdO thin films were studied by photoluminescence spectra recorded at room temperature. The current-voltage characteristics were also assessed and showed ohmic behaviour. The resistance decreased with increasing CdO content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...