Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 150: 104759, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31344588

RESUMO

Due to its outstanding longevity (decades), the shallow-water bivalve Glycmeris pilosa represents a prime target for sclerochronological research in the Mediterranean Sea. In the present study, we analyzed the microgrowth patterns and the stable carbon (δ13Cshell) and oxygen (δ18Oshell) isotopes of the outer shell layer of live-collected G. pilosa specimens from four different sites along the Croatian coast, middle Adriatic Sea. Combined analysis of shell growth patterns and temporally aligned δ18Oshell data indicated that the main growing season lasts from April to December, with fastest growth rates occurring during July and August when seawater temperatures exceeded 22 °C. Slow growth in the cold season (<12 °C) coincided with the formation of winter growth lines on the outer shell surface. The growth cessation occurred in winter, but on the outer shell surface the brown summer bands are more pronounced than the winter lines. Mutvei-staining of cross-sections facilitated the recognition of the growth lines. δ13Cshell values reflect ontogenetic changes in physiology as well as seasonal changes in primary production and salinity.


Assuntos
Bivalves , Monitoramento Ambiental , Animais , Bivalves/química , Bivalves/crescimento & desenvolvimento , Mar Mediterrâneo , Salinidade , Estações do Ano , Água do Mar
2.
Mar Environ Res ; 142: 234-249, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30376996

RESUMO

The trophic ecology of two bivalves, the clam Callista chione and the cockle Glycymeris bimaculata was studied using environmental and biochemical variables of the suspended particulate matter and the sediment. Samples were collected from two shallow sites, Pag and Cetina, in the coastal oligotrophic Mediterranean Sea, during a 17 month period. The temporal variation of the particulate matter reflected a mixture between marine and terrestrial sources throughout the year, with a clear marine influence during summer and fall, and predominance of terrestrial inputs during spring and winter. The digestive gland was a useful rapid turnover tissue, where the carbon isotope signal was species-specific and the nitrogen isotope one was site-specific. FA markers in the digestive gland revealed a mixed diet where Callista chione fed more upon fresh material than G. bimaculata which relied largely on bacteria-derived detritus. Overall, little feeding niche overlap was observed between the two species during the year, indicating resource partitioning, expected for a food-limited system. The present trophic ecology study in co-occurring species allowed identifying species-specific feeding adaptations to environmental variability.


Assuntos
Bivalves/fisiologia , Dieta , Comportamento Alimentar/fisiologia , Estações do Ano , Animais , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Cadeia Alimentar , Mar Mediterrâneo
3.
Mar Environ Res ; 134: 138-149, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29395260

RESUMO

Seasonal shell growth patterns were analyzed using the stable oxygen and carbon isotope values of live-collected specimens of the bivalve Callista chione from two sites in the Adriatic Sea (Pag and Cetina, Croatia). Micromilling was performed on the shell surface of three shells per site and shell oxygen isotopes of the powder samples were measured. The timing and rate of seasonal shell growth was determined by aligning the δ18Oshell-derived temperatures so that the best fit was achieved with the instrumental temperature curve. According to the data, shells grew only at very low rates or not at all during the winter months, i.e., between January and March. Shell growth slowdown/shutdown temperatures varied among sites, i.e., 13.6 °C at Pag and 16.6 °C at Cetina, indicating that temperature was not the only driver of shell growth. Likely, seasonal differences in seawater temperature and food supply were the major component explaining contrasting growth rates of C. chione at two study sites. Decreasing shell growth rates were also associated with the onset of gametogenesis suggesting a major energy reallocation toward reproduction rather than growth. These results highlight the need to combine sclerochronological analyses with ecological studies to understand life history traits of bivalves as archives of environmental variables.


Assuntos
Fatores Biológicos , Bivalves/fisiologia , Animais , Isótopos de Carbono , Croácia , Isótopos de Oxigênio
4.
PLoS One ; 11(9): e0162059, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27669452

RESUMO

Morphological and molecular tools were combined to resolve the misidentification between Glycymeris glycymeris and Glycymeris pilosa from Atlantic and Mediterranean populations. The ambiguous literature on the taxonomic status of these species requires this confirmation as a baseline to studies on their ecology and sclerochronology. We used classical and landmark-based morphometric approaches and performed bivariate and multivariate analyses to test for shell character interactions at the individual and population level. Both approaches generated complementary information. The former showed the shell width to length ratio and the valve asymmetry to be the main discriminant characters between Atlantic and Mediterranean populations. Additionally, the external microsculpture of additional and finer secondary ribs in G. glycymeris discriminates it from G. pilosa. Likewise, landmark-based geometric morphometrics revealed a stronger opisthogyrate beak and prosodetic ligament in G. pilosa than G. glycymeris. Our Bayesian and maximum likelihood phylogenetic analyses based on COI and ITS2 genes identified that G. glycymeris and G. pilosa form two separate monophyletic clades with mean interspecific divergence of 11% and 0.9% for COI and ITS2, respectively. The congruent patterns of morphometric analysis together with mitochondrial and nuclear phylogenetic reconstructions indicated the separation of the two coexisting species. The intraspecific divergence occurred during the Eocene and accelerated during the late Pliocene and Pleistocene. Glycymeris pilosa showed a high level of genetic diversity, appearing as a more robust species whose tolerance of environmental conditions allowed its expansion throughout the Mediterranean.

5.
Mar Environ Res ; 119: 79-87, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27254745

RESUMO

We evaluated the potential of Glycymeris pilosa as an environmental indicator for the Mediterranean region by applying sclerochronological techniques on a sample set collected from Pasman Channel in the middle Adriatic Sea. Maximal longevity of analyzed shells was 69 years. Growth increments in acetate peels of the hinge region had clear boundaries, and there was a strongly synchronous signal in growth-increment width among individuals. The final, replicated chronology spanned 1969 to 2013. Shell growth negatively correlated with local summer sea temperatures and positively with November precipitation. High correlation between shell growth and circulation patterns in the northern Ionian was also observed, with slower growth occurring during cyclonic regimes. Given its broad distribution in the region and the ability to crossdate, generate annually-resolved chronologies, and of a length that substantially overlaps with observational records, G. pilosa has considerable potential to test hypotheses relating to environmental variability and biological response in the Mediterranean.


Assuntos
Exoesqueleto/química , Bivalves/química , Monitoramento Ambiental/métodos , Animais , Arquivos , Clima , Ecossistema , Meio Ambiente , Região do Mediterrâneo , Mar Mediterrâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...