Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 33(5): 824-835, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37156621

RESUMO

Genome browsers have become an intuitive and critical tool to visualize and analyze genomic features and data. Conventional genome browsers display data/annotations on a single reference genome/assembly; there are also genomic alignment viewer/browsers that help users visualize alignment, mismatch, and rearrangement between syntenic regions. However, there is a growing need for a comparative epigenome browser that can display genomic and epigenomic data sets across different species and enable users to compare them between syntenic regions. Here, we present the WashU Comparative Epigenome Browser. It allows users to load functional genomic data sets/annotations mapped to different genomes and display them over syntenic regions simultaneously. The browser also displays genetic differences between the genomes from single-nucleotide variants (SNVs) to structural variants (SVs) to visualize the association between epigenomic differences and genetic differences. Instead of anchoring all data sets to the reference genome coordinates, it creates independent coordinates of different genome assemblies to faithfully present features and data mapped to different genomes. It uses a simple, intuitive genome-align track to illustrate the syntenic relationship between different species. It extends the widely used WashU Epigenome Browser infrastructure and can be expanded to support multiple species. This new browser function will greatly facilitate comparative genomic/epigenomic research, as well as support the recent growing needs to directly compare and benchmark the T2T CHM13 assembly and other human genome assemblies.


Assuntos
Epigenoma , Epigenômica , Humanos , Software , Genômica , Genoma Humano , Bases de Dados Genéticas , Internet
3.
Nature ; 604(7906): 437-446, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444317

RESUMO

The human reference genome is the most widely used resource in human genetics and is due for a major update. Its current structure is a linear composite of merged haplotypes from more than 20 people, with a single individual comprising most of the sequence. It contains biases and errors within a framework that does not represent global human genomic variation. A high-quality reference with global representation of common variants, including single-nucleotide variants, structural variants and functional elements, is needed. The Human Pangenome Reference Consortium aims to create a more sophisticated and complete human reference genome with a graph-based, telomere-to-telomere representation of global genomic diversity. Here we leverage innovations in technology, study design and global partnerships with the goal of constructing the highest-possible quality human pangenome reference. Our goal is to improve data representation and streamline analyses to enable routine assembly of complete diploid genomes. With attention to ethical frameworks, the human pangenome reference will contain a more accurate and diverse representation of global genomic variation, improve gene-disease association studies across populations, expand the scope of genomics research to the most repetitive and polymorphic regions of the genome, and serve as the ultimate genetic resource for future biomedical research and precision medicine.


Assuntos
Genoma Humano , Genômica , Genoma Humano/genética , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA
4.
Nucleic Acids Res ; 50(W1): W774-W781, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35412637

RESUMO

WashU Epigenome Browser (https://epigenomegateway.wustl.edu/browser/) is a web-based genomic data exploration tool that provides visualization, integration, and analysis of epigenomic datasets. The newly renovated user interface and functions have enabled researchers to engage with the browser and genomic data more efficiently and effectively since 2018. Here, we introduce a new integrated panel design in the browser that allows users to interact with 1D (genomic features), 2D (such as Hi-C), 3D (genome structure), and 4D (time series) data in a single web page. The browser can display three-dimensional chromatin structures with the 3D viewer module. The 4D tracks, called 'Dynamic' tracks, animatedly display time-series data, allowing for a more striking visual impact to identify the gene or genomic region candidates as a function of time. Genomic data, such as annotation features, numerical values, and chromatin interaction data can all be viewed in the dynamic track mode. Imaging data from microscopy experiments can also be displayed in the browser. In addition to software development, we continue to service and expand the data hubs we host for large consortia including 4DN, Roadmap Epigenomics, TaRGET and ENCODE, among others. Our growing user/developer community developed additional track types as plugins, such as qBed and dynseq tracks, which extend the utility of the browser. The browser serves as a foundation for additional genomics platforms including the WashU Virus Genome Browser (for COVID-19 research) and the Comparative Genome Browser. The WashU Epigenome Browser can also be accessed freely through Amazon Web Services at https://epigenomegateway.org/.


Assuntos
Bases de Dados Genéticas , Epigenoma , Navegador , Humanos , COVID-19/genética , Genoma Humano , Internet , Software
5.
Bioinformatics ; 37(8): 1168-1170, 2021 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-32941613

RESUMO

SUMMARY: Transposon calling cards is a genomic assay for identifying transcription factor binding sites in both bulk and single cell experiments. Here, we describe the qBED format, an open, text-based standard for encoding and analyzing calling card data. In parallel, we introduce the qBED track on the WashU Epigenome Browser, a novel visualization that enables researchers to inspect calling card data in their genomic context. Finally, through examples, we demonstrate that qBED files can be used to visualize non-calling card datasets, such as Combined Annotation-Dependent Depletion scores and GWAS/eQTL hits, and thus may have broad utility to the genomics community. AVAILABILITY AND IMPLEMENTATION: The qBED track is available on the WashU Epigenome Browser (http://epigenomegateway.wustl.edu/browser), beginning with version 46. Source code for the WashU Epigenome Browser with qBED support is available on GitHub (http://github.com/arnavm/eg-react and http://github.com/lidaof/eg-react). A complete definition of the qBED format is available as part of the WashU Epigenome Browser documentation (https://eg.readthedocs.io/en/latest/tracks.html#qbed-track). We have also released a tutorial on how to upload qBED data to the browser (http://dx.doi.org/10.17504/protocols.io.bca8ishw).


Assuntos
Genoma , Software , Epigenoma , Genômica , Ligação Proteica
6.
Nat Genet ; 52(10): 1132, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32939076

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Nucleic Acids Res ; 47(W1): W158-W165, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31165883

RESUMO

The WashU Epigenome Browser (https://epigenomegateway.wustl.edu/) provides visualization, integration and analysis tools for epigenomic datasets. Since 2010, it has provided the scientific community with data from large consortia including the Roadmap Epigenomics and the ENCODE projects. Recently, we refactored the codebase, redesigned the user interface, and developed various novel features. New features include: (i) visualization using virtual reality (VR), which has implications in biology education and the study of 3D chromatin structure; (ii) expanded public data hubs, including data from the 4DN, ENCODE, Roadmap Epigenomics, TaRGET, IHEC and TCGA consortia; (iii) a more responsive user interface; (iv) a history of interactions, which enables undo and redo; (v) a feature we call Live Browsing, which allows multiple users to collaborate remotely on the same session; (vi) the ability to visualize local tracks and data hubs. Amazon Web Services also hosts the redesign at https://epigenomegateway.org/.


Assuntos
Bases de Dados Genéticas , Epigenoma/genética , Software , Navegador , Conjuntos de Dados como Assunto , Epigenômica , Genoma Humano , Humanos , Internet , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...