Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Monit ; 8(12): 1195-202, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17133276

RESUMO

Summertime photochemical air pollution episodes within the United Kingdom have been proposed via modelling studies to be strongly influenced by regional scale inflow of air from the continental European boundary layer. We present a vertically resolved case study using measurements made from the NERC/Met Office BAe 146 research aircraft on 18th August 2005 over the South East of England and the North Sea during a weak anticyclone centred over Northern Europe. The vertical distribution of ozone, CO, NO(x), peroxyacetyl nitrate (PAN) and a wide range of both nonmethane hydrocarbons (NMHC) and oxygenated volatile organic compounds (OVOCs) were determined between 500 ft (approximately 152 m) and 7000 ft (approximately 2134 m) over the East Anglia coastline and 50 km inland. In excess of 80 ppbV ozone was observed within inflowing boundary layer air over the North Sea coast in a broad N-S sloping feature around 60 km wide. The inflowing feature of European origin was also observed further inland within the boundary layer albeit with lower, more variable, ozone mixing ratios. The increased variability in ozone over land was a product of titration by fresh surface emissions of NO via rapid upward transport in thermals, a hypothesis supported by the observed vertical wind speed component. Fast boundary layer mixing over land was further illustrated by a uniform distribution in reactive alkenes. A comparison between aircraft and surface O(3) UK AUN (Automatic Urban Network) measurements showed good agreement with the inland site, Sibton, but marked differences with the coastal monitoring site at Weybourne, potentially due to gradients established by ocean deposition in stably stratified marine air.


Assuntos
Poluentes Atmosféricos/análise , Monóxido de Carbono/análise , Óxidos de Nitrogênio/análise , Compostos Orgânicos/análise , Ozônio/análise , Inglaterra , Monitoramento Ambiental , Tempo (Meteorologia)
2.
J Environ Monit ; 6(3): 234-41, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14999322

RESUMO

Near real-time measurements of light non-methane hydrocarbons (NMHCs) and peroxyacetyl nitrate (PAN) have been performed in the free troposphere using two fast gas chromatography (GC) instruments designed for use on aircraft. A GC-helium ionisation detector (HID) system measured 15 C(2)-C(5) hydrocarbons with 5 min time resolution and a dual channel GC-Electron Capture Detector (ECD) measured PAN with 90 s resolution. Both instruments had low parts per trillion by volume (pptV) detection limits and ran continuously at the remote Jungfraujoch (JFJ) research station in the Swiss Alps (46.55[degree]N, 7.98[degree]E), 3580 m above mean sea level (AMSL), during February/March 2003. Carbon monoxide, ozone, nitrogen oxide and nitrogen dioxide and all odd nitrogen species (NO(y)) were also measured continuously. Hydrocarbons and CO were strongly correlated in all air-masses whilst PAN exhibited both positive and negative correlations with respect to O(3), dependent on age and origin of the air-mass sampled. PAN was found to contribute [similar]20% to the NO(y) sampled on average. The experiment, as well as providing interesting datasets from this remote location, also demonstrated that when optimised, GC techniques have the potential to measure at a time resolution significantly greater than is traditionally considered, with high sensitivity and low uncertainty.


Assuntos
Poluentes Atmosféricos/análise , Cromatografia Gasosa/instrumentação , Monitoramento Ambiental/instrumentação , Hidrocarbonetos/análise , Ácido Peracético/análogos & derivados , Ácido Peracético/análise , Automação , Desenho de Equipamento , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...