Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e29721, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694125

RESUMO

The Karo sub-ethnic is one of five Batak sub-ethnicities in the Karo Regency, North Sumatra Province, Indonesia. They are famous for their local knowledge about the traditional use of medicinal plants to treat various diseases. The "Kem-kem" traditional medicine is one of the traditional healing practices that involve using plants passed down through generations from their ancestors. One of the plant genus group in the Rutaceae family utilized in the traditional "Kem-kem" healing practice is a citrus known as "Rimo". This study aims to document the local knowledge about the diversity of Citrus spp. as Kem-kem's herbal medicinal plant. This study was conducted from April to July 2023 in the Kabanjahe and Berastagi districts, Karo Regency, North Sumatra. Data was collected using interviews with traditional healers, herbal medicine vendors, and direct observations at traditional markets, involving a total of 8 Citrus spp. The Karo uses "Rimo" with different local names as sources of traditional medicinal ingredients in practicing "Kem-kem". There are 15 local names comprising eight species of Citrus. Four are hybrids, i.e., Citrus x aurantiifolia (Christm.) Swingle, Citrus × aurantium L, Citrus × junos Siebold ex Yu.Tanaka, and Citrus × taitensis Risso. Two of the remaining species are recognized in infraspecific rank, one variety (Citrus medica var. sarcodactylis (Hoola van Nooten) Swingle) and one form (Citrus × aurantium f. deliciosa (Ten.) M.Hiroe). They were used as material sources for Kem-kem traditional medicine to treat at least nine health problems. There are two species with six local names included in the Least Concern (LC) category, namely C. medica (Rimo Gawang, Rimo Hantuantu, Rimo Kayu), C. medica var. sarcodactylis (Rimo Kuku Harimau), and C. medica (Rimo Telur Buaya), C. maxima (Burm.) Merr. (Rimo Malem). Nine local names are included in the Not Evaluated (NE) category, namely C. × junos (Rimo Kejaren), C. × taitensis (Rimo Jungga), C. × aurantium f. deliciosa (Rimo Keling), C. × aurantium (Rimo Kersik), Citrus hystrix DC. (Rimo Mukur), C. × taitensis (Rimo Puraga), C. × aurantium (Rimo Kalele), Citrus swinglei Burkill ex Harms (Rimo Pagar), and C. x aurantiifolia (Rimo Bunga). Rimo Kejaren (C. × junos) is a species that has the most benefits.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 218: 155-160, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-30981029

RESUMO

Recently, demand for authentication technology is growing rapidly in an attempt to overcome counterfeiting of high-value agricultural products, such as patchouli oil. Fingerprinting methods based on spectroscopy are one such technology being used for authentication. However, the spectral datasets obtained are multivariate in nature; containing thousands of data points for a single sample, making data acquisition and processing time-consuming. Therefore, reduction and simplification in the number of variables used required is needed to provide a more rapid and applicable method. Color cameras, which can capture image in the visible region light, could be such an alternative spectral data acquisition approach. In this research, a simplified spectroscopy method was developed for origin authentication of patchouli oil. The system consists of front ultraviolet light induced (365 nm) fluorescence and a white LED-based backlighting imaging system that consecutively captures the fluorescence and transmittance characteristics of the oil in the visible region. From the captured images, features were extracted and analyzed using Principle Component Analysis (PCA) to identify important image features for discrimination of origin. From the samples measured, the samples clustered around three islands of origin in the PCA space. A classification model based on fluorescence and transmittance image features (color values) could discriminate origin classes with a total accuracy of 88.46%. A lower accuracy was found for the Java class due to low sample numbers. This result demonstrates that the proposed system has the potential to be a rapid authentication tool for determining the geographical origin of patchouli oils.


Assuntos
Óleos Voláteis/análise , Imagem Óptica/métodos , Óleos de Plantas/análise , Pogostemon/química , Desenho de Equipamento , Geografia , Óleos Voláteis/classificação , Imagem Óptica/instrumentação , Óleos de Plantas/classificação , Pogostemon/classificação , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...