Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Res Methods ; 51(5): 2120-2138, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30997659

RESUMO

Face-to-face interactions are important for a variety of individual behaviors and outcomes. In recent years, a number of human sensor technologies have been proposed to incorporate direct observations in behavioral studies of face-to-face interactions. One of the most promising emerging technologies is the application of active Radio Frequency Identification (RFID) badges. They are increasingly applied in behavioral studies because of their low costs, straightforward applicability, and moderate ethical concerns. However, despite the attention that RFID badges have recently received, there is a lack of systematic tests on how valid RFID badges are in measuring face-to-face interactions. With two studies, we aim to fill this gap. Study 1 (N = 11) compares how data assessed with RFID badges correspond with video data of the same interactions (construct validity) and how this fit can be improved using straightforward data processing strategies. The analyses show that the RFID badges have a sensitivity of 50%, which can be enhanced to 65% when flickering signals with gaps of less than 75 s are interpolated. The specificity is relatively less affected by this interpolation process (before interpolation 97%, after interpolation 94.7%)-resulting in an improved accuracy of the measurement. In Study 2 (N = 73) we show that self-report data of social interactions correspond highly with data gathered with the RFID badges (criterion validity).


Assuntos
Relações Interpessoais , Feminino , Humanos , Masculino , Dispositivo de Identificação por Radiofrequência
2.
IEEE Trans Image Process ; 28(8): 3688-3702, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30762548

RESUMO

Deblurring is a fundamental inverse problem in bioimaging. It requires modeling the point spread function (PSF), which captures the optical distortions entailed by the image formation process. The PSF limits the spatial resolution attainable for a given microscope. However, recent applications require a higher resolution and have prompted the development of super-resolution techniques to achieve sub-pixel accuracy. This requirement restricts the class of suitable PSF models to analog ones. In addition, deblurring is computationally intensive, hence further requiring computationally efficient models. A custom candidate fitting both the requirements is the Gaussian model. However, this model cannot capture the rich tail structures found in both the theoretical and empirical PSFs. In this paper, we aim at improving the reconstruction accuracy beyond the Gaussian model, while preserving its computational efficiency. We introduce a new class of analog PSF models based on the Gaussian mixtures. The number of Gaussian kernels controls both the modeling accuracy and the computational efficiency of the model: the lower the number of kernels, the lower the accuracy and the higher the efficiency. To explore the accuracy-efficiency tradeoff, we propose a variational formulation of the PSF calibration problem, where a convex sparsity-inducing penalty on the number of Gaussian kernels allows trading accuracy for efficiency. We derive an efficient algorithm based on a fully split formulation of alternating split Bregman. We assess our framework on synthetic and real data, and demonstrate a better reconstruction accuracy in both geometry and photometry in point source localization-a fundamental inverse problem in fluorescence microscopy.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Algoritmos , Teorema de Bayes , Distribuição Normal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...