Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 109(3): 1270-1280, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31758950

RESUMO

Mechanical shock may cause cavitation in vials containing liquid formulations of therapeutic proteins and generate protein aggregates and other particulates. To test whether common formulation components such as protein molecules, air bubbles, or polysorbate 20 (PS20) micelles might nucleate cavitation, a high-speed video camera was used to detect cavitation in vials containing antibody formulations after application of controlled mechanical shock using a shock test. Higher concentrations of subvisible particles were found in formulations where cavitation had occurred. Bubbles trapped on vial surfaces were a primary site for cavitation nucleation; other potential cavitation nuclei were ineffective. The incidence of cavitation events observed after application of mechanical shock was lower in type I glass vials than in cyclic olefin polymer vials or in SiOPlas™ cyclic olefin polymer vials and correlated with the surface roughness of the different vials. To reduce the incidence of cavitation and the adsorption of mAb on glass-water and silicone oil-water interfaces and thus minimize protein damage due to cavitation, PS20, a common nonionic surfactant, was added to formulations. Addition of PS20 to formulations in glass and silicone oil-coated glass vials significantly reduced both incidence of mechanical shock-induced cavitation and the particle formation that resulted from cavitation events.


Assuntos
Polissorbatos , Proteínas , Adsorção , Vidro
2.
Sci Rep ; 9(1): 19210, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844126

RESUMO

The pharmaceutical industry has made improvements to mitigate protein degradation during the drug manufacturing process, storage, and transportation. However, there is less quality control after the manufacturer releases the drug. Previous research has shown that drop shock due to mishandling and accidental dropping of therapeutic vials may cause cavitation, aggregation, and particle formation. In this study, the cavitation behavior of Deionized (DI) water and 10mM L-Histidine buffer solution which were subjected to drop shock by hand dropping were investigated to study the effects of vial materials, solutions, fill volumes, drop heights, and internal vial geometries. A Phantom v7 high-speed camera was used to record images at a rate of 66,700 frames per second of the vials as they underwent drop shock. These videos were then reviewed to find the angle of impact, and to determine if there was cavitation. The results indicate that decreasing fill height by using a smaller fill volume or larger diameter vials were found to mitigate cavitation across drop heights. Secondly, results indicate there is a significant difference between the cavitation behavior of glass and plastic vials, and plastic had more cavitation cases. Lastly, there was not a significant difference in the occurrence of cavitation between DI water and L-Histidine buffer solution.


Assuntos
Embalagem de Medicamentos/métodos , Vidro/química , Química Farmacêutica/métodos , Indústria Farmacêutica/métodos , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...