Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 11(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36668790

RESUMO

We investigated the effect of practically realizable doses of silicate on arsenic (As) uptake by differential-As-accumulating rice cultivars grown on geogenically As-polluted soil. The possible health risk from the dietary ingestion of As through rice was also assessed. In addition, a solution culture experiment was conducted to examine the role of root-secreted weak acids in differential As acquisition by rice cultivars. When grown without silicate, Badshabhog accumulated a much smaller amount of As in grain (0.11 mg kg-1) when compared to the other three varieties. Satabdi, IR-36, and Khitish accumulated As in grain beyond the permissible limit (0.2 mg kg-1) for human consumption. The application of silicate effectively reduced the As content in the grain, husk, and straw of all of the cultivars. The grain As content fell to 17.2 and 27.6% with the addition of sodium metasilicate at the rates of 250 and 500 mg kg-1, respectively. In the case of Khitish, the grain As content was brought down within permissible limits by the applied silicate (500 mg kg-1). The integrated use of low-As-accumulating cultivars and silicate has great potential to reduce the public health risks associated with As. A positive correlation between root-secreted total weak acid and grain As content could explain the different rice cultivars' differential As acquisition capacity.

2.
Physiol Plant ; 174(2): e13676, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35316540

RESUMO

Drought is a major abiotic stress that affects crop productivity. Endophytic bacteria have been found to alleviate the adverse effects of drought on plants. In the present study, we evaluated the effects of two endophytic bacteria Shewanella putrefaciens strain MCL-1 and Cronobacter dublinensis strain MKS-1 on pearl millet (Pennisetum glaucum (L.) R. Br.) under drought stress conditions. Pearl millet plants were grown under three water levels: field capacity (FC), mild drought stress (MD), and severe drought stress (SD). The effects of inoculation on plant growth, physiological attributes, phytohormone content, and drought stress-responsive genes were assessed. The inoculation of pearl millet seeds with endophytes significantly improved shoot and root dry weight and root architecture of plants grown under FC and drought stress conditions. There was a significant increase in relative water content and proline accumulation in the inoculated plants. Among the phytohormones analyzed, the content of ABA and IAA was significantly higher in endophyte-treated plants under all moisture regimes than in uninoculated plants. C. dublinensis-inoculated plants had higher GA content than uninoculated plants under all moisture regimes. The expression level of genes involved in phytohormone biosynthesis (SbNCED, SbGA20oX, and SbYUC) and coding drought-responsive transcription factors (SbAP2, SbSNAC1 and PgDREB2A) was significantly higher under SD in endophyte-inoculated plants than in uninoculated plants. Thus, these endophytic bacteria presumably enhanced the tolerance of pearl millet to drought stress by modulating root growth, plant hormones, physiology and the expression of genes involved in drought tolerance.


Assuntos
Pennisetum , Shewanella putrefaciens , Cronobacter , Secas , Hormônios/metabolismo , Hormônios/farmacologia , Pennisetum/genética , Pennisetum/metabolismo , Pennisetum/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Shewanella putrefaciens/metabolismo , Estresse Fisiológico/genética , Água/metabolismo
3.
J Exp Bot ; 72(4): 1411-1431, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33130892

RESUMO

Abscisic acid (ABA) is a key regulator of plant development and stress tolerance. Here we report functional validation of the ABA receptor OsPYL6 by constitutive and stress-inducible overexpression and RNAi silencing, in an indica rice cultivar 'Pusa Sugandh 2'. Overexpression of OsPYL6 conferred ABA hypersensitivity during germination and promoted total root length. Overexpression and RNAi silencing of OsPYL6 resulted in enhanced accumulation of ABA in seedlings under non-stress conditions, at least, in part through up-regulation of different 9-cis epoxycarotenoid dioxygenase (NCED )genes. This suggests that PYL6 expression is crucial for ABA homeostasis. Analysis of drought tolerance of OsPYL6 transgenic and wild type plants showed that OsPYL6 overexpression enhanced the expression of stress-responsive genes and dehydration tolerance. Transgenic rice plants overexpressing OsPYL6 with AtRD29A (Arabidopsis thaliana Responsive to Dehydration 29A) promoter also exhibited about 25% less whole plant transpiration, compared with wild type plants under drought, confirming its role in activation of dehydration avoidance mechanisms. However, overexpression of PYL6 reduced grain yield under non-stress conditions due to reduction in height, biomass, panicle branching and spikelet fertility. RNAi silencing of OsPYL6 also reduced grain yield under drought. These results showed that rice OsPYL6 is a key regulator of plant development and drought tolerance, and fine-tuning of its expression is critical for improving yield and stress tolerance.


Assuntos
Ácido Abscísico , Oryza , Desidratação , Secas , Regulação da Expressão Gênica de Plantas , Germinação , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico
4.
Front Plant Sci ; 11: 579037, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123184

RESUMO

Priming is used to increase vigor, germination synchronization, seedling growth, and field establishment by advancing metabolic processes within seeds. Seed respiration is a good indicator of the metabolic processes that lead to transition toward germination. Onion seeds (cv. Pusa Ridhi) subjected to osmopriming (-1.5 MPa PEG6000 for 7 days), magnetopriming (100 mT for 30 min) and halopriming (150 mM KNO3 for 6 days), were evaluated at different times of imbibition to study the emergence index and respiration indices such as infrared thermal fingerprint, CO2 evolution rate, cytochrome c oxidase activity, and soluble sugars profile. Haloprimed seeds exhibited 42.5% higher emergence index as compared to unprimed control. Primed and unprimed seeds showed negative values for relative temperature (ΔT) (difference in temperature of seed and its immediate environment). Haloprimed seeds had the lowest values (-4.1 to -2.3°C) compared to other priming treatments over the germination period. Soluble sugars like raffinose, sucrose, glucose, and fructose contents were monitored and it was observed that en masse raffinose, glucose, and fructose levels were (17.5-59.9%) lower in haloprimed seeds over control. A positive correlation (r 2 = 0.504∗∗) was derived between the amount of these sugars and ΔT. Seed respiration, measured as CO2 evolution rate was more for haloprimed seeds that indicated that these soluble sugars were used as respiratory substrates. Significantly higher cytochrome c oxidase activity (40.7-89.8% and 12.5-66.6%) was observed in all primed seeds at 28 and 36 h, respectively. Among the various seed priming methods, halopriming proved to be the most effective priming treatment in onion seeds as evidenced by the higher respiration indices that resulted in faster metabolic rate and emergence index.

5.
Front Plant Sci ; 10: 1488, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850010

RESUMO

Abscisic acid (ABA) plays versatile functions in regulating plant development and tolerance to various biotic and abiotic stresses. Towards elucidating the functions of one of the ABA receptors (ABARs) in rice, OsPYL10 was cloned from drought tolerant rice cv. Nagina 22 and was overexpressed under stress inducible RD29A promoter in a mega rice variety MTU1010 by using Agrobacterium mediated genetic transformation. Four single copy transgenic lines selected based on Southern blot analysis were used for physiological and molecular analysis. PYL10 receptor appears to regulate its ligand ABA accumulation as PYL10 overexpressing transgenics accumulated 2-3.3-fold higher levels of ABA than that of WT in flag leaf at anthesis under non-stress conditions. The enhanced accumulation of ABA was associated with enhanced expression of genes for ABA biosynthesis viz., ZEP1, NCED1, NCED2, NCED3, and NCED4 in transgenics than in WT plants. At seedling stage, PYL10 transgenics showed significantly higher survival rate under cold stress as compared with WT plants. qRT-PCR analysis showed that expression levels of cold responsive genes viz., DREB1F, MYB3R2, TPP1, COR410, DEHYDRIN, and LEA3 were significantly higher in PYL10 overexpressing transgenic lines as compared to WT plants under cold stress. PYL10 transgenic and WT plants grown in the same pot were subjected to -80 kPa drought stress and recovery treatments at vegetative and reproductive stages. At vegetative stage drought stress, three overexpressing lines showed significantly higher grain yield (40-58%) and at reproductive stage drought stress one of these overexpression lines showed two-fold higher grain yield than that of WT plants. Excised leaf water loss analysis showed that PYL10 transgenic lost about 20% less water than WT plants. At reproductive stage, OsPYL10 transgenic maintained higher RWC, membrane stability index, chlorophyll content, and accumulated lower amount of MDA and H2O2 as compared with WT plants. qRT-PCR analysis showed that expression levels of RAB16, Dehydrin, LEA3, and ABA45 were higher in PYL10 transgenics as compared with WT plants under drought stress. Thus, overall results showed that OsPYL10 overexpression has potential to improve both drought and cold stress tolerance of indica rice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...