Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(9): 11656-11664, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38407031

RESUMO

High-performance solution-processed perovskite light-emitting diodes (PeLEDs) have emerged as a good alternative to the well-established technology of epitaxially grown AIIIBV semiconductor alloys. Colloidal cesium lead halide perovskite nanocrystals (CsPbX3 NCs) exhibit room-temperature excitonic emission that can be spectrally tuned across the entire visible range by varying the content of different halogens at the X-site. Therefore, they present a promising platform for full color display manufacturing. Engineering of highly efficient PeLEDs based on bromide and iodide perovskite NCs emitting green and red light, respectively, does not face major challenges except low operational stability of the devices. Meanwhile, mixed-halide counterparts demonstrating blue luminescence suffer from the electric field-induced phase separation (ion segregation) phenomenon described by the rearrangement (demixing) of mobile halide ions in the crystal lattice. This phenomenon results in an undesirable temporal redshift of the electroluminescence spectrum. However, to realize spectral tuning and, at the same time, address the issue of ion segregation less mobile Cd2+ ion could be introduced in the lattice at Pb2+-site that leads to the band gap opening. Herein, we report an original synthesis of CsPb0.88Cd0.12Br3 perovskite NCs and study their structural and optical properties, in particular electroluminescence. Multilayer PeLEDs based on the obtained NCs exhibit single-peak emission centered at 485 nm along with no noticeable change in the spectral line shape for 30 min which is a significant improvement of the device performance.

2.
J Phys Chem Lett ; 15(2): 540-548, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38197909

RESUMO

Optical data storage, information encryption, and security labeling technologies require materials that exhibit local, pronounced, and diverse modifications of their structure-dependent optical properties under external excitation. Herein, we propose and develop a novel platform relying on lead halide Ruddlesden-Popper phases that undergo a light-induced transition toward bulk perovskite and employ this phenomenon for the direct optical writing of multicolor patterns. This transition causes the weakening of quantum confinement and hence a reduction in the band gap. To extend the color gamut of photoluminescence, we use mixed-halide compositions that exhibit photoinduced halide segregation. The emission of the films can be tuned across the range of 450-600 nm. Laser irradiation provides high-resolution direct writing, whereas continuous-wave ultraviolet exposure is suitable for recording on larger scales. The luminescent images created on such films can be erased during the visualization process. This makes the proposed writing/erasing platform suitable for the manufacturing of optical data storage devices and light-erasable security labels.

3.
ACS Nano ; 17(10): 9235-9244, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36976247

RESUMO

Halide perovskites belong to an important family of semiconducting materials with electronic properties that enable a myriad of applications, especially in photovoltaics and optoelectronics. Their optical properties, including photoluminescence quantum yield, are affected and notably enhanced at crystal imperfections where the symmetry is broken and the density of states increases. These lattice distortions can be introduced through structural phase transitions, allowing charge gradients to appear near the interfaces between phase structures. In this work, we demonstrate controlled multiphase structuring in a single perovskite crystal. The concept uses cesium lead bromine (CsPbBr3) placed on a thermoplasmonic TiN/Si metasurface and enables single-, double-, and triple-phase structures to form on demand above room temperature. This approach promises application horizons of dynamically controlled heterostructures with distinctive electronic and enhanced optical properties.

4.
Nano Lett ; 23(7): 2570-2577, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36920328

RESUMO

During the last years, giant optical anisotropy has demonstrated its paramount importance for light manipulation. In spite of recent advances in the field, the achievement of continuous tunability of optical anisotropy remains an outstanding challenge. Here, we present a solution to the problem through the chemical alteration of halogen atoms in single-crystal halide perovskites. As a result, we manage to continually modify the optical anisotropy by 0.14. We also discover that the halide perovskite can demonstrate optical anisotropy up to 0.6 in the visible range─the largest value among non-van der Waals materials. Moreover, our results reveal that this anisotropy could be in-plane and out-of-plane depending on perovskite shape─rectangular and square. As a practical demonstration, we have created perovskite anisotropic nanowaveguides and shown a significant impact of anisotropy on high-order guiding modes. These findings pave the way for halide perovskites as a next-generation platform for tunable anisotropic photonics.

5.
ACS Nano ; 17(5): 4445-4452, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36848179

RESUMO

Halide perovskite nano- and microlasers have become a very convenient tool for many applications from sensing to reconfigurable optical chips. Indeed, they exhibit outstanding emission robustness to crystalline defects due to so-called "defect tolerance" allowing for their simple chemical synthesis and further integration with various photonic designs. Here we demonstrate that such robust microlasers can be combined with another class of resilient photonic components, namely, with topological metasurfaces supporting topological guided boundary modes. We show that this approach allows to outcouple and deliver the generated coherent light over tens of microns despite the presence of defects of different nature in the structure: sharp corners in the waveguide, random location of the microlaser, and defects in the microlaser caused by mechanical pressure applied during its transfer to the metasurface. As a result, the developed platform provides a strategy to attain robust integrated lasing-waveguiding designs resilient to a broad range of structural imperfections, both for electrons in a laser and for pseudo-spin-polarized photons in a waveguide.

6.
ACS Nano ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36594418

RESUMO

Detection of hazardous volatile organic and inorganic species is a crucial task for addressing human safety in the chemical industry. Among these species, there are hydrogen halides (HX, X = Cl, Br, I) vastly exploited in numerous technological processes. Therefore, the development of a cost-effective, highly sensitive detector selective to any HX gas is of particular interest. Herein, we demonstrate the optical detection of hydrogen chloride gas with solution-processed halide perovskite nanowire lasers grown on a nanostructured alumina substrate. An anion exchange reaction between a CsPbBr3 nanowire and vaporized HCl molecules results in the formation of a structure consisting of a bromide core and thin mixed-halide CsPb(Cl,Br)3 shell. The shell has a lower refractive index than the core does. Therefore, the formation and further expansion of the shell reduce the field confinement for experimentally observed laser modes and provokes an increase in their frequency. This phenomenon is confirmed by the coherency of the data derived from XPS spectroscopy, EDX analysis, in situ XRD experiments, HRTEM images, and fluorescent microspectroscopy, as well as numerical modeling for Cl- ion diffusion and the shell-thickness-dependent spectral position of eigenmodes in a core-shell perovskite nanowire. The revealed optical response allows the detection of HCl molecules in the 5-500 ppm range. The observed spectral tunability of the perovskite nanowire lasers can be employed not only for sensing but also for their precise spectral tuning.

7.
Nano Lett ; 21(23): 10019-10025, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34802241

RESUMO

Halide perovskite nanowire-based lasers have become a powerful tool for modern nanophotonics, being deeply subwavelength in cross-section and demonstrating low-threshold lasing within the whole visible spectral range owing to the huge gain of material even at room temperature. However, their emission directivity remains poorly controlled because of the efficient outcoupling of radiation through their subwavelength facets working as pointlike light sources. Here, we achieve directional lasing from a single perovskite CsPbBr3 nanowire by imprinting a nanograting on its surface, which provides stimulated emission outcoupling to its vertical direction with a divergence angle around 2°. The nanopatterning is carried out by the high-throughput laser ablation method, which preserves the luminescent properties of the material that is typically deteriorated after processing via conventional lithographic approaches. Moreover, nanopatterning of the perovskite nanowire is found to decrease the number of the lasing modes with a 2-fold increase of the quality factor of the remaining modes.

8.
J Phys Chem Lett ; 12(37): 8991-8998, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34514804

RESUMO

Halide perovskite nanomaterials are widely used in optoelectronics and photonics due to their outstanding luminescent properties, whereas their strong multiphoton absorption makes them prospective for bioimaging. Nonetheless, instability of perovskites in aqueous solutions is an important limitation that prevents their application in biology and medicine. Here, we demonstrate fluorescence and upconversion imaging in living cells by employing CsPbBr3 nanocrystals (NCs) that show an improved water-resistance (at least for 24 h) after their coating as individual particles with various silica-based shells. The obtained phTEOS-TMOS@CsPbBr3 NCs possess high quality, which we confirm with high-resolution transmission and scanning transmission electron microscopy, X-ray diffraction analysis, Fourier-transform infrared and energy-dispersive X-ray spectroscopies, as well as with fluorescence optical microscopy. The developed platform can make the halide perovskite NCs suitable for various bioimaging applications.


Assuntos
Compostos de Cálcio/química , Nanopartículas/química , Óxidos/química , Titânio/química , Água/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lasers , Camundongos , Microscopia Confocal , Nanopartículas/toxicidade , Dióxido de Silício/química
9.
Nanomaterials (Basel) ; 11(2)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562740

RESUMO

Inorganic halides perovskite CsPbX3 (X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) nanoparticles are efficient light-conversion objects that have attracted significant attention due to their broadband tunability over the entire visible spectral range of 410-700 nm and high quantum yield of up to 95%. Here, we demonstrate a new method of recrystallization of CsPbBr3 nanoparticles inside the electrospun fluoropolymer fibers. We have synthesized nonwoven tetrafluoroethylene mats embedding CsPbBr3 nanoparticles using inexpensive commercial precursors and syringe electrospinning equipment. The fabricated nonwoven mat samples demonstrated both down-conversion of UV light to 506 nm and up-conversion of IR femtosecond laser radiation to 513 nm green photoluminescence characterized by narrow emission line-widths of 35 nm. Nanoparticle formation inside nonwoven fibers was confirmed by TEM imaging and water stability tests controlled by fluorimetry measurements. The combination of enhanced optical properties of CsPbBr3 nanoparticles and mechanical stability and environmental robustness of highly deformable nonwoven fluoropolymer mats is appealing for flexible optoelectronic applications, while the industry-friendly fabrication method is attractive for commercial implementations.

10.
Nanomaterials (Basel) ; 10(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003320

RESUMO

Inexpensive perovskite light-emitting devices fabricated by a simple wet chemical approach have recently demonstrated very prospective characteristics such as narrowband emission, low turn-on bias, high brightness, and high external quantum efficiency of electroluminescence, and have presented a good alternative to well-established technology of epitaxially grown III-V semiconducting alloys. Engineering of highly efficient perovskite light-emitting devices emitting green, red, and near-infrared light has been demonstrated in numerous reports and has faced no major fundamental limitations. On the contrary, the devices emitting blue light, in particular, based on 3D mixed-halide perovskites, suffer from electric field-induced phase separation (segregation). This crystal lattice defect-mediated phenomenon results in an undesirable color change of electroluminescence. Here we report a novel approach towards the suppression of the segregation in single-layer perovskite light-emitting electrochemical cells. Co-crystallization of direct band gap CsPb(Cl,Br)3 and indirect band gap Cs4Pb(Cl,Br)6 phases in the presence of poly(ethylene oxide) during a thin film deposition affords passivation of surface defect states and an increase in the density of photoexcited charge carriers in CsPb(Cl,Br)3 grains. Furthermore, the hexahalide phase prevents the dissociation of the emissive grains in the strong electric field during the device operation. Entirely resistant to 5.7 × 106 V·m-1 electric field-driven segregation light-emitting electrochemical cell exhibits stable emission at wavelength 479 nm with maximum external quantum efficiency 0.7%, maximum brightness 47 cd·m-2, and turn-on bias of 2.5 V.

11.
ACS Nano ; 14(10): 13602-13610, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33054175

RESUMO

The full control of the fundamental photophysics of nanosystems at frequencies as high as few THz is key for tunable and ultrafast nanophotonic devices and metamaterials. Here we combine geometrical and ultrafast control of the optical properties of halide perovskite nanoparticles, which constitute a prominent platform for nanophotonics. The pulsed photoinjection of free carriers across the semiconducting gap leads to a subpicosecond modification of the far-field electromagnetic properties that is fully controlled by the geometry of the system. When the nanoparticle size is tuned so as to achieve the overlap between the narrowband excitons and the geometry-controlled Mie resonances, the ultrafast modulation of the transmittivity is completely reversed with respect to what is usually observed in nanoparticles with different sizes, in bulk systems, and in thin films. The interplay between chemical, geometrical, and ultrafast tuning offers an additional control parameter with impact on nanoantennas and ultrafast optical switches.

12.
ACS Nano ; 14(7): 8126-8134, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32539336

RESUMO

Reduction of the wavelength in on-chip light circuitry is critically important not only for the sake of keeping up with Moore's law for photonics but also for reaching toward the spectral ranges of operation of emerging materials, such as atomically thin semiconductors, vacancy-based single-photon emitters, and quantum dots. This requires efficient and tunable light sources as well as compatible waveguide networks. For the first challenge, halide perovskites are prospective materials that enable cost-efficient fabrication of micro- and nanolasers. On the other hand, III-V semiconductor nanowires are optimal for guiding of visible light as they exhibit a high refractive index as well as excellent shape and crystalline quality beneficial for strong light confinement and long-range waveguiding. Here, we develop an integrated platform for visible light that comprises gallium phosphide (GaP) nanowires directly embedded into compact CsPbBr3-based light sources. In our devices, perovskite microcrystals support stable room-temperature lasing and broadband chemical tuning of the emission wavelength in the range of 530-680 nm, whereas GaP nanowaveguides support efficient outcoupling of light, its subwavelength (<200 nm) confinement, and long-range guiding over distances more than 20 µm. As a highlight of our approach, we demonstrate sequential transfer and conversion of light using an intermediate perovskite nanoparticle in a chain of GaP nanowaveguides.

13.
Phys Chem Chem Phys ; 21(35): 18930-18938, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31453594

RESUMO

All-inorganic lead halide perovskites of various compositions have emerged as a prospective family of materials for light-emitting devices and photonic applications. However, a comprehensive study of their structural and electronic properties is still missing. Moreover, thin film fabrication of these perovskites comprising heterohalide anions by wet chemistry approaches also remains challenging. Here we fabricate high-quality CsPbBr3-xClx perovskite thin films using a wet chemical method accompanied by a chemical vapor anion exchange procedure, which allows rigorously studying their optical and structural properties at different compositions. Namely, we present both the numerical and experimental studies of the electronic properties of all-inorganic mixed-halide perovskites, showing their optical absorption, excitonic photoluminescence and exciton binding energy, phase, chemical composition, and band structure and the band gap evolution with a gradual change in x in CsPbBr3-xClx. The results reveal that as Cl ions substitute for Br ones in the perovskite crystal lattice the room-temperature phase does not change its orthorhombic symmetry, whereas the energy of the direct electronic transition from the valence to conduction band at the Γ-point increases nonlinearly. By using the experimentally derived nonlinear dependence it is easy to accurately predict the band gap for any CsPbBr3-xClx perovskite thin film consisting of grains with sizes beyond the quantum confinement regime.

14.
ACS Appl Mater Interfaces ; 11(1): 1040-1048, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30540432

RESUMO

Inorganic cesium lead halide perovskite nanowires, generating laser emission in the broad spectral range at room temperature and low threshold, have become powerful tools for the cutting-edge applications in the optoelectronics and nanophotonics. However, to achieve high-quality nanowires with the outstanding optical properties, it was necessary to employ long-lasting and costly methods of their synthesis, as well as postsynthetic separation and transfer procedures that are not convenient for large-scale production. Here we report a novel approach to fabricate high-quality CsPbBr3 nanolasers obtained by rapid precipitation from dimethyl sulfoxide solution sprayed onto hydrophobic substrates at ambient conditions. The synthesis technique allows producing the well-separated nanowires with a broad size distribution of 2-50 µm in 5-7 min, being the fastest method to the best of our knowledge. The formation of nanowires occurs via ligand-assisted reprecipitation triggered by intermolecular proton transfer from (CH3)2CHOH to H2O in the presence of a minor amount of water. The XRD patterns confirm an orthorhombic crystal structure of the as-grown CsPbBr3 single nanowires. Scanning electron microscopy images reveal their regular shape and truncated pyramidal end facets, while high-resolution transmission electron microscopy ones demonstrate their single-crystal structure. The lifetime of excitonic emission of the nanowires is found to be 7 ns, when the samples are excited with energy below the lasing threshold, manifesting the low concentration of defect states. The measured nanolasers of different lengths exhibit pronounced stimulated emission above 13 µJ cm-2 excitation threshold with quality factor Q = 1017-6166. Their high performance is assumed to be related to their monocrystalline structure, low concentration of defect states, and improved end facet reflectivity.

15.
Nano Lett ; 18(9): 5522-5529, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30071168

RESUMO

Halide perovskites are known to support excitons at room temperatures with high quantum yield of luminescence that make them attractive for all-dielectric resonant nanophotonics and meta-optics. Here we report the observation of broadly tunable Fano resonances in halide perovskite nanoparticles originating from the coupling of excitons to the Mie resonances excited in the nanoparticles. Signatures of the photon-exciton (" hybrid") Fano resonances are observed in dark-field spectra of isolated nanoparticles, and also in the extinction spectra of aperiodic lattices of such nanoparticles. In the latter case, chemical tunability of the exciton resonance allows reversible tuning of the Fano resonance across the 100 nm bandwidth in the visible frequency range, providing a novel approach to control optical properties of perovskite nanostructures. The proposed method of chemical tuning paves the way to an efficient control of emission properties of on-chip-integrated light-emitting nanoantennas.

16.
Dalton Trans ; 47(22): 7578-7586, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29790542

RESUMO

A series of [Ir(C^N)2(NN)][PF6] complexes in which NN is 5-(4-ethynylphenyl)-2,2'-bipyridine has been synthesized and characterized by spectroscopic methods. All novel complexes exhibit unique singlet-triplet dual emission in solution with two well-separated emission bands. The mechanism of dual emission has been elucidated on the basis of experimental data and confirmed by TDDFT calculations.

17.
Dalton Trans ; 46(31): 10408-10417, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28745339

RESUMO

Herein, complexes [ZnL]2 (1), {(H2O)Zn(µ-L)Yb[OCH(CF3)2]3} (2), {[(CF3)2HCO]Zn(µ-L)Yb[OCH(CF3)2](µ-OH)}2 (3), and [(H2O)Ln2(L)3] (Ln = Yb (4) and Gd (5)) containing a bridging Schiff-base ligand (H2L = N,N'-bis(3-methoxy salicylidene)phenylene-1,2-diamine) were synthesized. The compounds 1-4 were structurally characterized. The ytterbium derivatives 2-4 exhibited bright NIR metal-centred photoluminescence (PL) of Yb3+ ion under one- (λex = 380 nm) and two-photon (λex = 750 nm) excitation. The superior luminescence properties of complex 2, which was suggested as a marker for NIR bioimaging, were explained via the strong absorption of the 375 nm LMCT state of the ZnL chromophore, efficient energy transfer from ZnL towards Yb3+ through a reversible ligand-to-lanthanide electron transfer process, and absence of luminescence quenchers (C-H and O-H groups) in the first coordination sphere of the rare-earth atom.

18.
Phys Chem Chem Phys ; 17(16): 11000-5, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25824367

RESUMO

A series of lanthanide complexes (Ln = Nd, Sm, Eu, Gd and Yb) with anionic 2-mercaptobenothiazolate (mbt) ligands were synthesized. Depending on the solvents chosen for the synthesis, Ln(mbt)3(THF)2 and Ln(mbt)3(Et2O) complexes were precipitated from THF and Et2O solutions respectively. The structure of Yb(mbt)3(Et2O) was determined by X-ray analysis. Photophysical properties of the complexes were studied. It was found that under photoexcitation Nd and Yb derivatives exhibit bright metal-centered luminescence in the NIR region while Sm(mbt)3(THF)2 demonstrates intensive visible emission corresponding to (4)G5/2 → (6)HJ (J = 5/2, 7/2, 9/2, 11/2) f-f transitions of Sm(3+) along with NIR emission of moderate intensity. In the case of europium compounds as well as Sm(mbt)3(Et2O) no luminescence was detected. It is assumed that the difference in photoluminescence of Yb and Eu complexes can be explained by an intramolecular electron transfer process, which efficiently proceeds in these compounds.


Assuntos
Elementos da Série dos Lantanídeos/química , Tiazóis/química , Transporte de Elétrons , Ligantes , Medições Luminescentes , Modelos Moleculares , Conformação Molecular
19.
Dalton Trans ; 42(44): 15699-705, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24048370

RESUMO

New 8-quinolinolate (Q) complexes of yttrium (1) and ytterbium (2) were synthesized by the reactions of Cp3Y and Yb[N(SiMe3)2]3 with 3 equiv. of 8-hydroxyquinoline in a DME solution. Single crystal X-ray analysis revealed the trinuclear molecular structure of the compounds Ln3Q9. The LDI-TOFMS investigation displayed that under the laser impact the compounds split off Q(-) anions to give Ln3Q8(+), Ln2Q5(+) and LnQ3(+) moieties. In the negative mode spectra the anions Q(-) and LnQ4(-) were observed. The DFT calculations showed the decreased stability of cationic Ln-quinolinolate as compared with their anionic counterparts. Complex 2 which is used as an emitter in a three-layer OLED displayed a metal-centered emission at 979 nm and an intensity of 50 µW cm(-2) at 15.5 V.

20.
Dalton Trans ; 40(30): 7713-7, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21584296

RESUMO

The first monomeric anhydrous scandium tris(8-quinolinolate) complex 1 with the 2-amino-8-quinolinolate ligands and the Sc(2)Q(6) dinuclear complex 2 with the unsubstituted 8-quinolinolate ligands have been synthesized and characterized by X-ray analysis and DFT calculations. The intramolecular hydrogen bonds appear to be responsible for the unique monomeric structure of complex 1. The DFT-based analysis of the electron density topology reveals the (3,-1) critical points corresponding to the O···H and N···H bonds. The two scandium atoms in compound 2 are inequivalent due to different ligand surroundings. They are coordinated by seven (5O, 2N) and eight (4O, 4N) ligand atoms. The increase in the coordination number is accompanied by a decrease in the positive charge of the metal atom as evidenced by the DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...