Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Bioinformation ; 20(4): 397-403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854755

RESUMO

Colorectal cancer (CRC) is the second most common cancer in the world. In Saudi Arabia, CRC is the most common cancer in males and the third most common in females, and its incidence rate is rising as the country continues to develop. However, the country does not have a national CRC screening program for CRC. This review aims to review recent studies that have attempted to address and rectify this issue and discern the most notable and prevalent barriers. Despite these efforts, guidelines are still lacking. Two prospective studies have been conducted in recent years, one of which was a national pilot screening program conducted by the Ministry of Health (MOH). While both had a similar number of participants, the colonoscopy rate for patients with a positive fecal immunochemical test (FIT) in the MOH program was only 20% compared to 75.8% in the Al-Kharj program. Awareness of the Saudi population regarding CRC and its screening appears to be insufficient. The most common barriers to patients' willingness to undergo screening were embarrassment, fear, and pain. Barriers to physicians are mostly related to factors outside their hands, such as lack of equipment and time. We conclude that efforts should be made to establish a national screening program and improve awareness of the population and physicians.

2.
Bioinformation ; 20(4): 305-313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854759

RESUMO

Cardiovascular disease (CVD) is one of the main causes of death in Saudi Arabia. Cardiac remodeling plays a critical role in the pathophysiology of heart failure. Major focus of our study was to identify crucial genes involved in the pathological remodeling of the heart caused by pressure overload. We utilized various in-silico tools to analyze and interpret microarray data obtained from the Gene Expression Omnibus (GEO) database (GSE120739), including GEO2R analysis, Metascape analysis, WebGestalt analysis, and IPA (Ingenuity pathway analysis). Our findings indicate that certain genes, including Cartilage Oligomeric Matrix Protein (COMP), collagen type VIII alpha 1 chain (COL8A1) and Lysyl Oxidase (LOX) under the influence caused by knockdown of KDM3A, were down regulated by the extracellular matrix pathway. Moreover, genes, such as Acyl-CoA Thioesterase 1 (ACOT1) were up regulated by the fatty acid metabolism pathway. Overexpression of lysine-specific demethylase 3A (KDM3A) leads to the up regulation of fibrosis-related genes COMP, COL8A1, and LOX and the down regulation of ACOT1, result in enhanced fibrosis and heart failure. Our results suggest that COMP, COL8A1, LOX, and ACOT1 warrant further investigation in the development of cardiac fibrosis and as potential biomarkers for causing heart failure.

3.
Bioinformation ; 19(3): 226-229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808372

RESUMO

Leber hereditary optic neuropathy (LHON) is a rare maternally inherited mitochondrial disorder that typically affects young male adults in their second and third decades of life. It usually manifests as painless, subacute, progressive, bilateral vision loss, with more than 90% of affected individuals losing their vision before age 50. Compared with other diseases that cause optic neuritis (multiple sclerosis or neuromyelitis optica spectrum disorders), LHON has worsening visual function in the first 6-12 months of disease progression, is predominantly male, the optic nerve is affected bilaterally from onset, there is no gadolinium enhancement on MRI, no response to disease-modifying therapy, and there is a family history of mutation in mitochondrial DNA. In this article, we describe an interesting and challenging case of LHON due to a homoplasmic variant in the MT -CO3 gene that was initially misdiagnosed as a monophasic demyelinating disorder (clinically isolated syndrome vs acute disseminated encephalomyelitis vs neuromyelitis optica spectrum disorders).

4.
Oncol Lett ; 26(5): 477, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37809047

RESUMO

Breast cancer (BC) is one of the most widespread types of cancer affecting females, and therefore, early diagnosis is critical. BC is a complex heterogeneous disease affected by several key pathways. Among these, WNT proteins and their frizzled receptors (FZD) have been demonstrated to be crucial in regulating a number of cellular and molecular events in BC tumorigenesis. The role of the WNT receptor, FZD8, in BC has received minimal attention; for that reason, the present study examined the prognostic value of its protein expression pattern in a BC cohort. FZD8 cytoplasmic expression pattern analysis revealed that ~38% of the primary samples presented with a high expression profile, whereas ~63% of the samples had a low expression profile. Overall, ~46% of the malignant tissues in the lymph node-positive samples exhibited an increased FZD8 cytoplasmic expression, whereas 54% exhibited low expression levels. An increased expression of FZD8 was associated with several clinicopathological characteristics of the patients, including a low survival rate, tumor vascular invasion, tumor size and grade, and molecular subtypes. Affymetrix microarray triple-negative BC datasets were analyzed and compared with healthy breast tissues in order to predict the potential interfering microRNAs (miRNAs) in the WNT/FZD8 signaling pathway. A total of 29 miRNAs with the potential to interact with the WNT/FZD8 signaling pathway were identified, eight of which exhibited a significant prediction score. The target genes for each predicted miRNA were identified. On the whole, the findings of the present study suggest that FZD8 is a potential prognostic marker for BC, shedding some light onto the silencing mechanisms involved in the complex BC signaling.

5.
Bioinformation ; 19(1): 1-4, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720294

RESUMO

Oral Squamous cell Cancers (OSCC) is strongly associated with tobacco consumption. We here in present a case study of a OSCC patient who refused standard oncological care (SOC), to highlight the importance of integrating palliative care (PC) for improved patient outcomes. A 61 years male patient, with history of chewing tobacco for more than 20 years and diagnosed to have OSCC for 1.5 years presented with severe anaemia and a cauliflower-like growth (12 x 10 cm) in the left oral cavity and cheek with greenish-yellow discharge. Pus culture was positive for K. pneumoniae and P. aeruginosa. Patient is also a known hypertensive for 15 years and a diabetic for 7 years on allopathic treatment. However, the patient refused SOC for oral cancer and relied on siddha treatment. Packed cell transfusions were given to correct anaemia and the blood glucose levels was kept under control. Frequent wound debridement, oral care, antibiotics, balanced-diet and hydration improved wound-bed granulation. Patient and family members were counselled and explained in detail on the need for SOC by sharing previous OSCC patients' care and outcomes at our centre. Patient gained trust and courage and agreed for chemotherapy, which reduced the disease burden and improved the quality of life (QoL) considerably. Therefore, PC integration at an early stage of treatment is imperative as it reduced (i) the burden of secondary infection, (ii) pain and distress, and (iii) improved the QoL.

6.
Biomed Rep ; 19(2): 56, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560313

RESUMO

Breast cancer (BC) is the most common cancer in women worldwide, with 2.3 million cases recorded in 2020. Despite improvements in cancer treatment, patients with BC still succumb to the disease, due to regional and distant metastases when diagnosed at later stages. Several immune checkpoint inhibitors have been approved for BC treatment, based on their expression and role in maintaining immunosurveillance against tumors. The present study aimed to evaluate the expression of 12 immune checkpoints in patients with BC, and assess their role as diagnostic and therapeutic markers. Expression levels were measured using reverse transcription-quantitative polymerase chain reaction. Among the 12 immune markers, herpesvirus entry mediator (HVEM) was found to be significantly upregulated in patients with malignant BC compared to non-malignant controls, with a relative fold change (FC) of 1.46 and P=0.012. A similar finding was observed for cytotoxic T-lymphocyte-associated antigen 4 (CTLA4; FC=1.47 and P=0.035). In addition, receiver operating characteristic curve analysis revealed that HVEM expression allowed significant differentiation between groups, with an area under the curve of 0.74 (P=0.013). Upregulation in both HVEM and CTLA4 was revealed to be significantly associated with the human epidermal growth factor receptor-2 (HER2)-enriched phenotype (FC=3.53, P=0.009 and FC=5.98, P=0.002, respectively), while only HVEM was significantly associated with the triple-negative phenotype (FC=2.07, P=0.016). Furthermore, HVEM was significantly higher in patients with grade III tumors (FC=1.88, P=0.025) and negative vascular invasion (FC=1.67, P=0.046) compared with non-malignant controls. Serum protein levels were assessed by multiplex immunoassay, and a significant increase in HVEM was detected in patients with malignant BC compared with that in non-malignant controls (P=0.035). These data indicated that HVEM may serve as a potential biomarker and target for immunotherapy, especially for certain types of BC.

7.
Exp Mol Pathol ; 132-133: 104867, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37634863

RESUMO

Mast cells (MCs) are tissue-resident innate immune cells that express the high-affinity receptor for immunoglobulin E and are responsible for host defense and an array of diseases related to immune system. We aimed in this study to characterize the pathways and gene signatures of human cord blood-derived MCs (hCBMCs) in comparison to cells originating from CD34- progenitors using next-generation knowledge discovery methods. CD34+ cells were isolated from human umbilical cord blood using magnetic activated cell sorting and differentiated into MCs with rhIL-6 and rhSCF supplementation for 6-8 weeks. The purity of hCBMCs was analyzed by flow cytometry exhibiting the surface markers CD117+CD34-CD45-CD23-FcεR1αdim. Total RNA from hCBMCs and CD34- cells were isolated and hybridized using microarray. Differentially expressed genes were analyzed using iPathway Guide and Pre-Ranked Gene Set Enrichment Analysis. Next-generation knowledge discovery platforms revealed MC-specific gene signatures and molecular pathways enriched in hCBMCs and pertain the immunological response repertoire.


Assuntos
Sangue Fetal , Mastócitos , Humanos , Descoberta do Conhecimento , Antígenos CD34/genética , Diferenciação Celular/genética
8.
Pak J Med Sci ; 39(4): 988-993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492288

RESUMO

Background & Objectives: Accurate identification of molecular and toxicological functions of potential drug candidates is crucial for drug discovery and development. This may aid in the evaluation of the risks of genotoxicity and carcinogenesis. In addition, in silico characterization of existing and new drugs might offer clues for future investigations and aid in the development of anticancer treatments. Using next-generation knowledge discovery (NGKD) methodology, we endeavored to establish a risk assessment of anticancer drugs for their molecular mechanism(s) and genotoxicity. Methods: This study was performed at the Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia, in November 2022. Using innovative in silico model systems, we assessed the molecular mechanism of action and toxicity of around 20 distinct substances such as Deguelin, Etoposide, Camptothecin, Cytarabine (Ara-C), Cisplatin, Hydroxyurea, Trichostain A, Antimycin, Colchicine, 2-deoxyglucose, Tunicamycin, Thapsigargin, Vinblastin, Docetaxel, Oxaliplatin, Methotrexate, 5-flurouracil, Bleomycin, Taxol (Paclitaxel), and Apicidin. Using the Ingenuity Pathway Analysis (IPA) knowledge base, the number of targets for each compound was determined in silico. Subsequently, they were examined using Fisher's exact test and Benjamini Hochberg Multiple Testing Correction (P<0.05) and submitted to core analysis with IPA to decode the biological and toxicological activities differently controlled by these drugs. In addition, a multiple comparison module in IPA was used to compare the core analyses of each molecule. In addition, we obtained the top 100 protein targets of Etoposide, Camptothecin, and Ara-C using SwissTargetPrediction, as well as the key pathways and gene ontologies affected by these drugs and disease associations using the WebGestalt tool. Results: We identified distinct toxicological signatures and canonical signaling pathways in tumor cell lines regulated by these 20 anticancer drugs. These signaling pathways included cell death and apoptosis in addition to molecular processes, p53 signaling, and aryl hydrocarbon receptor signaling. The TP53 signaling pathway is utilized by these agents to effectively trigger cell death and apoptosis, and p53 functions as a master regulator in a variety of cellular stress responses, including genotoxic stress. Conclusion: Our research has laid the groundwork for the discovery of additional biomarkers that assess both the safety and effectiveness of treatment. Our mechanism based "NGKD" tools have more relevance for the identification of safer therapies and has the potential to lead to the rational screening of drug candidates targeting specific molecular networks and canonical pathways implicated in cancer and genotoxicity. In addition, the combination of protein, microRNA and metabolome profiles may be essential for the development of translatable biomarkers for the safety and efficacy of pharmacotherapeutic agents.Our research has laid the groundwork for the discovery of additional biomarkers that assess both the safety and the effectiveness of a treatment.

9.
BMC Immunol ; 24(1): 13, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370001

RESUMO

Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease affecting different organ systems. This study aimed to determine the concentrations of 30 different human cytokines, chemokines, and growth factors in human plasma to understand the role of these markers in the pathogenicity of SLE using Luminex Multiple Analyte Profiling (xMAP) technology. Plasma samples were obtained from patients with SLE (n = 28), osteoarthritis (OA) (n = 9), and healthy individuals (n = 12) were obtained. High levels of TNF, IL-6, IFN-γ, INF-α, IL-4, IL-5, IL-13, IL-8, IP-10, MIG, MCP-1, MIP-1ß, GM-CSF, G-CSF, EGF, VEGF, IL-12, IL-1RA, and IL-10 was detected in SLE patients compared with the OA and healthy control groups. xMAP analysis has been used to address the differential regulation of clinical heterogeneity and immunological phenotypes in SLE patients. In addition, complete disease phenotyping information along with cytokine immune profiles would be useful for developing personalized treatments for patients with SLE.


Assuntos
Citocinas , Lúpus Eritematoso Sistêmico , Humanos , Feminino , Projetos Piloto , Quimiocinas
10.
Front Immunol ; 14: 1103097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033956

RESUMO

Introduction: Clusterin is a moonlighting protein that has many functions. It is a multifunctional holdase chaperone glycoprotein that is present intracellularly and extracellularly in almost all bodily fluids. Clusterin is involved in lipid transport, cell differentiation, regulation of apoptosis, and clearance of cellular debris, and plays a protective role in ensuring cellular survival. However, the possible involvement of clusterin in arthritic disease remains unclear. Given the significant potential of clusterin as a biomarker of osteoarthritis (OA), a more detailed analysis of its complex network in an inflammatory environment, specifically in the context of OA, is required. Based on the molecular network of clusterin, this study aimed to identify interacting partners that could be developed into biomarker panels for OA. Methods: The STRING database and Cytoscape were used to map and visualize the clusterin connectome. The Qiagen Ingenuity Pathway Analysis (IPA) software was used to analyze and study clusterin associated signaling networks in OA. We also analyzed transcription factors known to modulate clusterin expression, which may be altered in OA. Results: The top hits in the clusterin network were intracellular chaperones, aggregate-forming proteins, apoptosis regulators and complement proteins. Using a text-mining approach in Cytoscape, we identified additional interacting partners, including serum proteins, apolipoproteins, and heat shock proteins. Discussion: Based on known interactions with proteins, we predicted potential novel components of the clusterin connectome in OA, including selenoprotein R, semaphorins, and meprins, which may be important for designing new prognostic or diagnostic biomarker panels.


Assuntos
Conectoma , Osteoartrite , Humanos , Clusterina , Condrócitos/metabolismo , Biomarcadores , Biologia
12.
Nucleic Acids Res ; 51(8): 3590-3617, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36987858

RESUMO

Chondrogenesis is a multistep process, in which cartilage progenitor cells generate a tissue with distinct structural and functional properties. Although several approaches to cartilage regeneration rely on the differentiation of implanted progenitor cells, the temporal transcriptomic landscape of in vitro chondrogenesis in different models has not been reported. Using RNA sequencing, we examined differences in gene expression patterns during cartilage formation in micromass cultures of embryonic limb bud-derived progenitors. Principal component and trajectory analyses revealed a progressively different and distinct transcriptome during chondrogenesis. Differentially expressed genes (DEGs), based on pairwise comparisons of samples from consecutive days were classified into clusters and analysed. We confirmed the involvement of the top DEGs in chondrogenic differentiation using pathway analysis and identified several chondrogenesis-associated transcription factors and collagen subtypes that were not previously linked to cartilage formation. Transient gene silencing of ATOH8 or EBF1 on day 0 attenuated chondrogenesis by deregulating the expression of key osteochondrogenic marker genes in micromass cultures. These results provide detailed insight into the molecular mechanism of chondrogenesis in primary micromass cultures and present a comprehensive dataset of the temporal transcriptomic landscape of chondrogenesis, which may serve as a platform for new molecular approaches in cartilage tissue engineering.


Assuntos
Condrogênese , Transcriptoma , Condrogênese/genética , Cartilagem/metabolismo , Diferenciação Celular/genética , Células-Tronco/metabolismo , Células Cultivadas , Condrócitos/metabolismo
13.
Pak J Med Sci ; 39(2): 423-429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950431

RESUMO

Objectives: Accurately identifying the cellular, biomolecular, and toxicological functions of anticancer drugs help to decipher the potential risk of genotoxicity and other side effects. Here, we examined bleomycin for cellular, molecular and toxicological mechanisms using next-generation knowledge discovery (NGKD) tools. Methods: This study was conducted at the Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia in October 2022. We first analyzed the raw Toxicogenomic and DNA damage-inducing (TGx-DDI) gene expression data from Gene Expression Omnibus (GEO) (GSE196373) of TK6 cells treated with 10 µM bleomycin and TK6 cells treated with DMSO for four hours using the GEO2R tool based on the Linear Models for Microarray Analysis (limma) R packages to derive the differentially expressed genes (DEGs). Then, iPathwayGuide was used to determine differentially regulated signaling pathways, biological processes, cellular, molecular functions and upstream regulators (genes and miRNAs). Results: Bleomycin differently regulates the p53 pathway, transcriptional dysregulation in cancer, FOXO pathway, viral carcinogenesis, and cancer pathways. The biological processes such as p53 class mediator signaling, intrinsic apoptotic signaling, DNA damage response, and DNA damage-induced intrinsic apoptotic signaling and molecular functions like ubiquitin protein transferase and p53 binding were differentially regulated by bleomycin. iPathwayGuide analysis showed that the p53 and its regulatory gene and microRNA networks induced by bleomycin. Conclusion: Analysis of TGx-DDI data of bleomycin using NGKD tools provided information about toxicogenomics and other mechanisms. Integration of all "omics" based approaches is crucial for the development of translatable biomarkers for evaluating anticancer drugs for safety and efficacy.

15.
Front Pediatr ; 10: 919996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813387

RESUMO

Epilepsy is a neurological disorder described as recurrent seizures mild to severe convulsions along with conscious loss. There are many different genetic anomalies or non-genetic conditions that affect the brain and cause epilepsy. The exact cause of epilepsy is unknown so far. In this study, whole-exome sequencing showed a family having novel missense variant c.1603C>T, p. Arg535Cys in exon 10 of Sodium Voltage-Gated Channel Alpha Subunit 1 (SCN1A) gene. Moreover, targeted Sanger sequencing analysis showed c.1212A>G p.Val404Ile in SCN1A gene in 10 unrelated patients and a mutation in Calcium Voltage-Gated Channel Auxiliary Subunit Beta 4 gene where one base pair insertion of "G" c.78_79insG, p.Asp27Glyfs*26 in the exon 3 in three different patients were observed from the cohort of 25 epileptic sporadic cases. The insertion changes the amino acid sequence leading to a frameshift mutation. Here, we have described, for the first time, three novel mutations that may be associated with epilepsy in the Saudi population. The study not only help us to identify the exact cause of genetic variations causing epilepsy whereas but it would also eventually enable us to establish a database to provide a foundation for understanding the critical genomic regions to control epilepsy in Saudi patients.

16.
Front Pediatr ; 10: 862722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685919

RESUMO

Leukodystrophies are a diverse group of genetically established disorders categorized by unusual white matter changes on brain imaging. Hypomyelinating leukodystrophies (HLDs) are a group of neurodevelopmental disorders that affect myelin sheath development in the brain. These disorders are categorized as developmental delay, spasticity, hypotonia, and intellectual disabilities. We describe a patient with developmental delay, cerebellar ataxia, spasticity, hypotonia, and intellectual disability from a healthy family member. Whole exome sequencing (WES) was performed to identify causative variants, which were further analyzed by bioinformatic analysis. WES was performed, and Sanger sequencing-based segregation analysis confirmed the presence of the homozygous missense variants of NM_203290.3 c.934T > C p.Ser312Pro of RNA polymerase I and III subunit C (POLR1C) gene in this patient and heterozygous variant in the unaffected carrier father and mother, supporting the pathogenicity and inheritance pattern of this variant. Furthermore, the variant identified by WES was validated in healthy controls (n = 100) using Sanger sequencing analysis. Finally, our study explained the important use of WES in disease diagnosis and provided further evidence that the variant in the POLR1C gene may play an important role in the development of hypomyelinating leukodystrophy in Saudi families.

17.
Saudi J Biol Sci ; 29(7): 103309, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35663845

RESUMO

Intellectual disability and developmental encephalopathies are mostly linked with infant epilepsy. Epileptic encephalopathy is a term that is used to define association between developmental delay and epilepsy. Mutations in the STXBP1 (Syntaxin-binding protein 1) gene have been previously reported in association with multiple severe early epileptic encephalopathies along with many neurodevelopmental disorders. Among the disorders produced due to any mutations in the STXBP1 gene is developmental and epileptic encephalopathy 4 (OMIM: 612164), is an autosomal dominant neurologic disorder categorized by the onset of tonic seizures in early infancy (usually in the first months of life). In this article, we report two Saudi families one with de novo heterozygous stop-gain mutation c.364C > T and a novel missense c. 305C > A p.Ala102Glu in exon 5 of the STXBP1 gene (OMIM: 602926) lead to development of epileptic encephalopathy 4. The variants identified in the current study broadened the genetic spectrum of STXBP1 gene related with diseases, which will help to add in the literature and benefit to the studies addressing this disease in the future.

18.
Infect Disord Drug Targets ; 22(5): e030322201654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35240967

RESUMO

BACKGROUND: Hepatitis C viral (HCV) infection is a major clinical burden globally. Pegylated IFN-α-2a (PEG-IFN-α-2a) with ribavirin (RIB) therapy induces an array of cellular antiviral responses, including dsRNA kinases (PKR), chemokines, and cytokines to tackle the HCV infection. However, many HCV patients develop resistance to PEG-IFN/RIB therapy rendering the therapy ineffective. OBJECTIVES: Here, we assess the significance of chemokines in response to PEG-IFN-α-2a with ribavirin (PEG-IFN/RIB) therapy. METHODS: Twenty patients with HCV infection and ten healthy controls were enrolled in this study and patients were categorized into two groups 1), HCV-Responder (HCV-R), and 2) HCV-non-responder (HCV-NR). We analyzed IP-10, MIG, MCP-1, EOTAXIN, RANTES, IL-8, MIP-1a, and MIP-1b by a magnetic bead-based multiplex immunoassay approach based on Luminex X-MAP multiplex technology, using a MAGPIX instrument (Luminex Corporation, USA). RESULTS: A significant elevation of ALT and AST enzymes was observed in HCV-NR. Besides, the PEG-IFN/RIB therapy in both MIG and MCP-1 in HCV-NR patients was significantly induced. PEGIFN/ RIB therapy significantly increased the levels of chemokines, such as IL-8, IP-10, EOTAXIN, MIG, RANTES, and MIP-1ß, in HCV-R, indicating the chemokine response to PEG-IFN/RIB therapy. CONCLUSION: Hence, MCP-1 and MIG could be the potential biomarkers in HCV-NR and might be associated with the development of liver fibrosis, liver failure, and hepatocellular carcinoma. LIMITATIONS: Our study has only twenty samples of PEG-IFN/RIB treated HCV patients. This might be the reason for the lack of association between some of the inflammatory markers evaluated and the SVR, therefore, the association found between the chemokine levels observed in the plasma of HCV-R and HCV-NR and EVR cannot be extrapolated to patients infected with other HCV genotypes.


Assuntos
Antivirais , Hepatite C Crônica , Ribavirina , Antivirais/uso terapêutico , Biomarcadores , Quimiocina CCL5/sangue , Quimiocina CXCL10/sangue , Quimioterapia Combinada , Genótipo , Hepatite C Crônica/tratamento farmacológico , Humanos , Interferon alfa-2/uso terapêutico , Interleucina-8/sangue , Polietilenoglicóis , Prognóstico , Proteínas Recombinantes/uso terapêutico , Ribavirina/uso terapêutico , Resultado do Tratamento
19.
J Orthop Translat ; 32: 77-84, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34976733

RESUMO

BACKGROUND: Clusterin (CLU; also known as apolipoprotein J) is an ATP-independent holdase chaperone that prevents proteotoxicity as a consequence of protein aggregation. It is a ∼60 kDa disulfide-linked heterodimeric protein involved in the clearance of cellular debris and the regulation of apoptosis. CLU has been proposed to protect cells from cytolysis by complement components and has been implicated in Alzheimer's disease due to its ability to bind amyloid-ß peptides and prevent aggregate formation in the brain. Recent studies suggest that CLU performs moonlighting functions. CLU exists in two major forms: an intracellular form and a secreted extracellular form. The intracellular form of CLU may suppress stress-induced apoptosis by forming complexes with misfolded proteins and facilitates their degradation. The secreted form of CLU functions as an extracellular chaperone that prevents protein aggregation. METHODS: In this review, we discuss the published literature on the biology of CLU in cartilage, chondrocytes, and other synovial joint tissues. We also review clinical studies that have examined the potential for using this protein as a biomarker in synovial and systemic fluids of patients with rheumatoid arthritis (RA) or osteoarthritis (OA). RESULTS: Since CLU functions as an extracellular chaperone, we propose that it may be involved in cytoprotective functions in osteoarticular tissues. The secreted form of CLU can be measured in synovial and systemic fluids and may have translational potential as a biomarker of early repair responses in OA. CONCLUSION: There is significant potential for investigating synovial and systemic CLU as biomarkers of OA. Future translational and clinical orthopaedic studies should carefully consider the diverse roles of this protein and its involvement in other comorbidities. Therefore, future biomarker studies should not correlate circulating CLU levels exclusively to the process of OA pathogenesis and progression. Special attention should be paid to CLU levels in synovial fluid. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: There is significant potential for investigating synovial and systemic CLU as a predictive biomarker of osteoarthritis (OA) progression and response to novel treatments and interventions. Given that CLU plays diverse roles in other comorbidities such as rheumatoid arthritis (RA) and obesity, future translational and clinical orthopaedic biomarker studies should not directly correlate circulating CLU levels to the process of OA pathogenesis and progression. However, special attention should be paid to CLU levels in synovial fluid. The cytoprotective properties of CLU may support the implementation of regenerative strategies and new approaches for developing targeted therapeutics for OA.

20.
Front Pharmacol ; 12: 688227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531741

RESUMO

SARS-CoV-2 is the causative agent for coronavirus disease-19 (COVID-19) and belongs to the family Coronaviridae that causes sickness varying from the common cold to more severe illnesses such as severe acute respiratory syndrome, sudden stroke, neurological complications (Neuro-COVID), multiple organ failure, and mortality in some patients. The gene expression profiles of COVID-19 infection models can be used to decipher potential therapeutics for COVID-19 and related pathologies, such as Neuro-COVID. Here, we used the raw RNA-seq reads (Single-End) in quadruplicates derived using Illumina Next Seq 500 from SARS-CoV-infected primary human bronchial epithelium (NHBE) and mock-treated NHBE cells obtained from the Gene Expression Omnibus (GEO) (GSE147507), and the quality control (QC) was evaluated using the CLC Genomics Workbench 20.0 (Qiagen, United States) before the RNA-seq analysis using BioJupies web tool and iPathwayGuide for gene ontologies (GO), pathways, upstream regulator genes, small molecules, and natural products. Additionally, single-cell transcriptomics data (GSE163005) of meta clusters of immune cells from the cerebrospinal fluid (CSF), such as T-cells/natural killer cells (NK) (TcMeta), dendritic cells (DCMeta), and monocytes/granulocyte (monoMeta) cell types for comparison, namely, Neuro-COVID versus idiopathic intracranial hypertension (IIH), were analyzed using iPathwayGuide. L1000 fireworks display (L1000FWD) and L1000 characteristic direction signature search engine (L1000 CDS2) web tools were used to uncover the small molecules that could potentially reverse the COVID-19 and Neuro-COVID-associated gene signatures. We uncovered small molecules such as camptothecin, importazole, and withaferin A, which can potentially reverse COVID-19 associated gene signatures. In addition, withaferin A, trichostatin A, narciclasine, camptothecin, and JQ1 have the potential to reverse Neuro-COVID gene signatures. Furthermore, the gene set enrichment analysis (GSEA) preranked method and Metascape web tool were used to decipher and annotate the gene signatures that were potentially reversed by these small molecules. In conclusion, our study unravels a rapid approach for applying next-generation knowledge discovery (NGKD) platforms to discover small molecules with therapeutic potential against COVID-19 and its related disease pathologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...