Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Med ; 12(12): 13522-13537, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148543

RESUMO

BACKGROUND: Monepantel is an anti-helminthic drug that also has anti-cancer properties. Despite several studies over the years, the molecular target of monepantel in mammalian cells is still unknown, and its mechanism-of-action is not fully understood, though effects on cell cycle, mTOR signalling and autophagy have been implicated. METHODS: Viability assays were performed on >20 solid cancer cell cells, and apoptosis assays were performed on a subset of these, including 3D cultures. Genetic deletion of BAX/BAK and ATG were used to establish roles of apoptosis and autophagy in killing activity. RNA-sequencing was performed on four cell lines after monepantel treatment, and differentially regulated genes were confirmed by Western blotting. RESULTS: We showed that monepantel has anti-proliferative activity on a broad range of cancer cell lines. In some, this was associated with induction of apoptosis which was confirmed using a BAX/BAK-deficient cell line. However, proliferation is still inhibited in these cells following monepantel treatment, indicating cell-cycle disruption as the major anti-cancer effect. Previous studies have also indicated autophagic cell death occurs following monepantel treatment. We showed autophagy induction in multiple cell lines; however, deletion of a key autophagy regulator ATG7 had minimal impact on monepantel's anti-proliferative activity, suggesting autophagy is associated with, but not required for its anti-tumour effects. Transcriptomic analysis of four cell lines treated with monepantel revealed downregulation of many genes involved in the cell cycle, and upregulation of genes linked to ATF4-mediated ER stress responses, especially those involved in amino-acid metabolism and protein synthesis. CONCLUSIONS: As these outcomes are all associated with mTOR signalling, cell cycle and autophagy, we now provide a likely triggering mechanism for the anti-cancer activity of monepantel.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias , Animais , Humanos , Proteína X Associada a bcl-2 , Neoplasias/tratamento farmacológico , Neoplasias/genética , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Linhagem Celular Tumoral , Mamíferos/metabolismo
2.
Cancers (Basel) ; 14(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36428623

RESUMO

BACKGROUND: Developing therapies for cancer cachexia has not been successful to date, in part due to the challenges of achieving robust quantitative measures as a readout of patient treatment. Hence, identifying biomarkers to assess the outcomes of treatments for cancer cachexia is of great interest and important for accelerating future clinical trials. METHODS: We established a novel xenograft model for cancer cachexia with a cachectic human PC3* cell line, which was responsive to anti-Fn14 mAb treatment. Using RNA-seq and secretomic analysis, genes differentially expressed in cachectic and non-cachectic tumors were identified and validated by digital droplet PCR (ddPCR). Correlation analysis was performed to investigate their impact on survival in cancer patients. RESULTS: A total of 46 genes were highly expressed in cachectic PC3* tumors, which were downregulated by anti-Fn14 mAb treatment. High expression of the top 10 candidates was correlated with low survival and high cachexia risk in different cancer types. Elevated levels of LCN2 were observed in serum samples from cachectic patients compared with non-cachectic cancer patients. CONCLUSION: The top 10 candidates identified in this study are candidates as potential biomarkers for cancer cachexia. The diagnostic value of LCN2 in detecting cancer cachexia is confirmed in patient samples.

3.
Bioorg Chem ; 120: 105635, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124512

RESUMO

Chronic activation of beta-adrenergic receptors by the sympathetic nervous system results in the apoptosis of cardiomyocytes. Due to the inability of cardiomyocytes to regenerate, this can result in heart failure. Upregulation of the pro-apoptotic protein Bim has been implicated as the cause of cardiomyocyte apoptosis. Beta blockers are the frontline drug used to negate this apoptotic pathway, as no direct inhibitors of Bim expression currently exist. Unfortunately, treatment of heart failure using beta blockers is not optimal. Therefore, direct inhibition of Bim expression is an attractive strategy to provide protection against stress-induced apoptosis of cardiomyocytes. Herein we explore a class of N-benzylsulfonyl-2-phenylazepanes to obtain anti-apoptotic compounds capable of reducing Bim expression levels to 7% of the control at 10 µM in cardiomyocytes under conditions of chronic beta-adrenergic receptor activation with little inhibitory effect upon protein kinase A activity and minimal toxicity.


Assuntos
Insuficiência Cardíaca , Proteínas Proto-Oncogênicas , Animais , Apoptose , Proteína 11 Semelhante a Bcl-2/metabolismo , Proteína 11 Semelhante a Bcl-2/farmacologia , Fibroblastos/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/metabolismo
4.
Neuromolecular Med ; 24(4): 405-414, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35149957

RESUMO

Cellular apoptosis is a key pathological mechanism contributing to neuronal death following ischemic stroke. The pro-apoptotic Bcl-2 family protein, Bim, is an important regulator of apoptosis. In this study we investigated the effect of Bim expression on post-stroke functional outcomes, brain injury and inflammatory mechanisms. Wild type (WT) and Bim-deficient mice underwent 1-h middle cerebral artery occlusion (MCAO) followed by 23 h of reperfusion. At 24-h post-stroke, we assessed functional deficit, infarct volume, immune cell death, as well as the number of infiltrating immune cells in the brain and circulating immune cells. Bim deficiency did not affect infarct volume (P > 0.05), but resulted in less motor impairment (~ threefold greater latency to fall in hanging grip strength test, P < 0.05) and a lower median clinical score than WT mice (P < 0.05). Additionally following MCAO, Bim-deficient mice exhibited fewer myeloid cells (particularly neutrophils) in the ischemic brain hemisphere and less apoptosis of CD3+ T cells in the spleen and thymus compared with WT (all P < 0.05). After MCAO, Bim-deficient mice also tended to have more M2-polarised macrophages in the brain than WT mice. In sham-operated mice, we found that Bim deficiency resulted in greater numbers of circulating total CD45+ leukocytes, Ly6Clo+ monocytes and CD3+ T cells, although MCAO did not affect the number of circulating cells at 24 h in either genotype. Our findings suggest that Bim deficiency modulates post-stroke outcomes, including reductions in motor impairment, brain inflammation and systemic post-stroke leukocyte apoptosis. Bim could therefore serve as a potential therapeutic target for stroke.


Assuntos
Proteína 11 Semelhante a Bcl-2 , Isquemia Encefálica , AVC Isquêmico , Animais , Camundongos , Apoptose/genética , Encéfalo , Isquemia Encefálica/complicações , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Inflamação/genética , Inflamação/complicações , AVC Isquêmico/patologia , Camundongos Endogâmicos C57BL , Deleção de Genes , Proteína 11 Semelhante a Bcl-2/genética
5.
Cell Death Differ ; 29(1): 96-104, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304242

RESUMO

Inflammation is a natural defence mechanism of the body to protect against pathogens. It is induced by immune cells, such as macrophages and neutrophils, which are rapidly recruited to the site of infection, mediating host defence. The processes for eliminating inflammatory cells after pathogen clearance are critical in preventing sustained inflammation, which can instigate diverse pathologies. During chronic inflammation, the excessive and uncontrollable activity of the immune system can cause extensive tissue damage. New therapies aimed at preventing this over-activity of the immune system could have major clinical benefits. Here, we investigated the role of the pro-survival Bcl-2 family member A1 in the survival of inflammatory cells under normal and inflammatory conditions using murine models of lung and peritoneal inflammation. Despite the robust upregulation of A1 protein levels in wild-type cells upon induction of inflammation, the survival of inflammatory cells was not impacted in A1-deficient mice compared to wild-type controls. These findings indicate that A1 does not play a major role in immune cell homoeostasis during inflammation and therefore does not constitute an attractive therapeutic target for such morbidities.


Assuntos
Peritonite , Pneumonia , Animais , Apoptose/fisiologia , Sobrevivência Celular , Inflamação/patologia , Camundongos
6.
FEBS J ; 288(10): 3164-3185, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33830641

RESUMO

CD4+ T cells recognize peptides presented by major histocompatibility complex class II molecules (MHC-II). These peptides are generally derived from exogenous antigens. Macroautophagy has been reported to promote endogenous antigen presentation in viral infections. However, whether influenza A virus (IAV) infection-induced macroautophagy also leads to endogenous antigen presentation through MHC-II is still debated. In this study, we show that IAV infection leads to endogenous presentation of an immunodominant viral epitope NP311-325 by MHC-II to CD4+ T cells. Mechanistically, such MHC-II-restricted endogenous IAV antigen presentation requires de novo protein synthesis as it is inhibited by the protein synthesis inhibitor cycloheximide, and a functional ER-Golgi network as it is totally blocked by Brefeldin A. These results indicate that MHC-II-restricted endogenous IAV antigen presentation is dependent on de novo antigen and/or MHC-II synthesis, and transportation through the ER-Golgi network. Furthermore, such endogenous IAV antigen presentation by MHC-II is enhanced by TAP deficiency, indicating some antigenic peptides are of cytosolic origin. Most importantly, the bulk of such MHC-II-restricted endogenous IAV antigen presentation is blocked by autophagy inhibitors (3-MA and E64d) and deletion of autophagy-related genes, such as Beclin1 and Atg7. We have further demonstrated that in dendritic cells, IAV infection prevents autophagosome-lysosome fusion and promotes autophagosome fusion with MHC class II compartment (MIIC), which likely promotes endogenous IAV antigen presentation by MHC-II. Our results provide strong evidence that IAV infection-induced autophagosome formation facilitates endogenous IAV antigen presentation by MHC-II to CD4+ T cells. The implication for influenza vaccine design is discussed.


Assuntos
Apresentação de Antígeno/genética , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Interações Hospedeiro-Patógeno/genética , Vírus da Influenza A Subtipo H1N1/genética , Macroautofagia/genética , Animais , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteína 7 Relacionada à Autofagia/deficiência , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/imunologia , Proteína Beclina-1/deficiência , Proteína Beclina-1/genética , Proteína Beclina-1/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/virologia , Brefeldina A/farmacologia , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/virologia , Feminino , Expressão Gênica , Células HEK293 , Antígenos de Histocompatibilidade Classe II/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Epitopos Imunodominantes/química , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Macroautofagia/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Plasmídeos/química , Plasmídeos/metabolismo , Transfecção
7.
FEBS J ; 288(6): 1809-1821, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32894892

RESUMO

Sepsis remains to be a major contributor to mortality in ICUs, and immune suppression caused by immune cell apoptosis determines the overall patient survival. However, diagnosis of sepsis-induced lymphopenia remains problematic with no accurate prognostic techniques or biomarkers for cell death available. Developing reliable prognostic tools for sepsis-mediated cell death is not only important for identifying patients at increased risk of immune suppression but also to monitor treatment progress of currently trialed immunotherapy strategies. We have previously shown an important role for endoplasmic reticulum stress (ER stress) in inducing sepsis-mediated cell death and here report on the identification of a secreted form of the ER chaperone BiP (immunoglobulin binding protein) as a novel circulating prognostic biomarker for immune cell death and ER stress during sepsis. Using biochemical purification and mass spectrometry coupled with an established in vitro sepsis cell death assay, we identified BiP/Grp78 as a factor secreted by lipopolysaccharide-activated macrophages that is capable of inducing cell death in target cells. Quantitative ELISA analysis showed significantly elevated levels of circulating BiP in mice undergoing polymicrobial sepsis, which was absent in Bim-/- mice that are protected from sepsis-induced lymphopenia. Using blood serum from human sepsis patients, we could detect a significant difference in levels of secreted BiP in sepsis patients compared to nonseptic controls, suggesting that secreted circulating BiP could indeed be used as a prognostic marker that is directly correlative to immune cell death during sepsis.


Assuntos
Biomarcadores/metabolismo , Proteínas de Choque Térmico/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Sepse/imunologia , Animais , Apoptose/imunologia , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/imunologia , Proteína 11 Semelhante a Bcl-2/metabolismo , Biomarcadores/sangue , Morte Celular/imunologia , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/sangue , Proteínas de Choque Térmico/metabolismo , Humanos , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Prognóstico , Células RAW 264.7 , Sepse/sangue , Sepse/diagnóstico , Análise de Sobrevida
8.
Cell Stress ; 4(12): 270-272, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33336149

RESUMO

Sepsis and its impact on human health can be traced back to 1000 BC and continues to be a major health burden today. It causes about 11 million deaths world-wide of which, more than a third are due to neonatal sepsis. There is no effective treatment other than fluid resuscitation therapy and antibiotic treatment that leave patients immunosuppressed and vulnerable to nosocomial infections. Added to that, ageing population and the emergence of antibiotic resistant bacteria pose new challenges. Most of the deleterious effects of sepsis are due to the host response to the systemic infection. In the initial phase of infection, hyper activation of the immune system leads to cytokine storm, which could lead to organ failure and this accounts for about 15% of overall deaths. However, the subsequent immune paralysis phase (mostly attributed to apoptotic death of immune cells) accounts for about 85% of all deaths. Past clinical trials (more than 100 in the last 30 years) all targeted the inflammatory phase with little success, predictably, for inflammation is a necessary process to fight infection. In order to identify the regulators of immune cell death during sepsis, we carried out an unbiased, whole genome CRISPR screening in mice and identified Trigger Receptor Expressed in Myeloid-like 4 (Treml4) as the receptor that controls both the inflammatory phase and the immune suppression phase in sepsis (Nedeva et al. (2020) Nature Immunol, doi: 10.1038/s41590-020-0789-z). Characterising the Treml4 gene knockout mice revealed new insights into the relative roles of TLR4 and TREML4 in inducing the inflammatory cytokine storm during sepsis.

9.
Nat Immunol ; 21(12): 1585-1596, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020659

RESUMO

Sepsis is a biphasic disease characterized by an acute inflammatory response, followed by a prolonged immunosuppressive phase. Therapies aimed at controlling inflammation help to reduce the time patients with sepsis spend in intensive care units, but they do not lead to a reduction in overall mortality. Recently, the focus has been on addressing the immunosuppressive phase, often caused by apoptosis of immune cells. However, molecular triggers of these events are not yet known. Using whole-genome CRISPR screening in mice, we identified a triggering receptor expressed on myeloid cells (TREM) family receptor, TREML4, as a key regulator of inflammation and immune cell death in sepsis. Genetic ablation of Treml4 in mice demonstrated that TREML4 regulates calcium homeostasis, the inflammatory cytokine response, myeloperoxidase activation, the endoplasmic reticulum stress response and apoptotic cell death in innate immune cells, leading to an overall increase in survival rate, both during the acute and chronic phases of polymicrobial sepsis.


Assuntos
Suscetibilidade a Doenças , Imunidade Inata , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Sepse/etiologia , Animais , Biomarcadores , Morte Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Edição de Genes , Técnicas de Silenciamento de Genes , Marcação de Genes , Genômica/métodos , Imunofenotipagem , Inflamação/etiologia , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fenótipo , Linfócitos T/imunologia , Linfócitos T/metabolismo
10.
Anal Biochem ; 606: 113877, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738212

RESUMO

Rapidly identifying cachexia-inducing factors that directly induce muscle wasting is an existing challenge. We developed two reporter cell lines that allow swift detection of such factors in blood from patients. C2C12 myoblasts were used for the establishment of reporter cells. A luciferase reporter gene, driven by promoters of wasting genes, Muscle RING-finger protein-1 (MuRF1) and Muscle Atrophy F-Box Protein (MAFbx/Atrogin-1) were used for the construction of reporter constructs. Increased expression of these genes in muscle tissue under wasting conditions was shown in vivo and in vitro. We found these reporter cell lines could detect factors associated with cancer cachexia, such as myostatin (Mstn), activin A, and TNF-α. We further investigated the capacity to directly detect a cachectic state using plasma samples from cachectic mice and cancer patients. Activation of the reporter cell lines was observed by the addition of plasma from mice with cancer cachexia and serum samples from patients with pancreatic or colorectal cancer. These results indicate that the reporter cell lines are competent as a tool for screening cachexia-inducing factors and potentially distinguishing a cachectic state induced by cancer.


Assuntos
Caquexia/sangue , Caquexia/genética , Atrofia Muscular/sangue , Atrofia Muscular/genética , Neoplasias/complicações , Ativinas/metabolismo , Animais , Caquexia/diagnóstico , Caquexia/etiologia , Linhagem Celular Transformada , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Atrofia Muscular/diagnóstico , Atrofia Muscular/etiologia , Mioblastos/metabolismo , Miostatina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
Int Rev Cell Mol Biol ; 351: 1-22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32247577

RESUMO

Apoptosis is an important part of both health and disease and is often regulated by the BCL-2 family of proteins. These proteins are either pro- or anti-apoptotic, existing in a delicate balance during homeostasis. They are best known for their role in regulating the activation of caspases and the execution of a cell in response to a variety of stimuli. However, it is often forgotten that these BCL-2 family proteins also have important roles to play in cell maintenance that are not associated with apoptosis. These include roles in regulating processes such as cell cycle progression, mitochondrial function, autophagy, intracellular calcium concentration, glucose and lipid metabolism, and the unfolded protein response. In addition to these established alternate functions, further discoveries are being made that have potential therapeutic benefits in diseases such as cancer. BOK, a BCL-2 family protein thought comparable to multidomain pro-apoptotic proteins BAX and BAK, has recently been identified as a key player in metabolism of and resistance to the commonly used chemotherapeutic 5-FU. As a result of such findings, which could see the potential use of BOK as a biomarker for 5-FU sensitivity or mimetic molecules as a resensitization strategy, new targets and mechanisms of pathology may arise from further investigation into the realm of alternate functions of BCL-2 family proteins.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Autofagia , Cálcio/metabolismo , Ciclo Celular , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Desdobramento de Proteína
12.
Cell Death Differ ; 27(1): 102-116, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043701

RESUMO

Many cell types are known to undergo a series of morphological changes during the progression of apoptosis, leading to their disassembly into smaller membrane-bound vesicles known as apoptotic bodies (ApoBDs). In particular, the formation of circular bulges called membrane blebs on the surface of apoptotic cells is a key morphological step required for a number of cell types to generate ApoBDs. Although apoptotic membrane blebbing is thought to be regulated by kinases including ROCK1, PAK2 and LIMK1, it is unclear whether these kinases exhibit overlapping roles in the disassembly of apoptotic cells. Utilising both pharmacological and CRISPR/Cas9 gene editing based approaches, we identified ROCK1 but not PAK2 or LIMK1 as a key non-redundant positive regulator of apoptotic membrane blebbing as well as ApoBD formation. Functionally, we have established an experimental system to either inhibit or enhance ApoBD formation and demonstrated the importance of apoptotic cell disassembly in the efficient uptake of apoptotic materials by various phagocytes. Unexpectedly, we also noted that ROCK1 could play a role in regulating the onset of secondary necrosis. Together, these data shed light on both the mechanism and function of cell disassembly during apoptosis.


Assuntos
Apoptose , Membrana Celular/ultraestrutura , Quinases Lim/fisiologia , Quinases Ativadas por p21/fisiologia , Quinases Associadas a rho/fisiologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Cricetinae , Inibidores Enzimáticos/farmacologia , Humanos , Células Jurkat , Quinases Lim/antagonistas & inibidores , Necrose , Células THP-1 , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Associadas a rho/antagonistas & inibidores
13.
Front Cell Dev Biol ; 7: 108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281814

RESUMO

Sepsis is one of the leading causes of deaths world-wide and yet there are no therapies available other than ICU treatment. The patient outcome is determined by a complex interplay between the pro and anti-inflammatory responses of the body i.e., a homeostatic balance between these two competing events to be achieved for the patient's recovery. The initial attempts on drug development mainly focused on controlling inflammation, however, without any tangible outcome. This was despite most deaths occurring during the immune paralysis stage of this biphasic disease. Recently, the focus has been shifting to understand immune paralysis (caused by apoptosis and by anti-inflammatory cytokines) to develop therapeutic drugs. In this review we put forth an argument for a proper understanding of the molecular basis of inflammation as well as apoptosis for developing an effective therapy.

14.
J Immunol ; 203(4): 1064-1075, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308090

RESUMO

Neutrophils are rapidly deployed innate immune cells, and excessive recruitment is causally associated with influenza-induced pathologic conditions. Despite this, the complete set of influenza lethality-associated neutrophil effector proteins is currently unknown. Whether the expression of these proteins is predetermined during bone marrow (BM) neutrophil maturation or further modulated by tissue compartment transitions has also not been comprehensively characterized at a proteome-wide scale. In this study, we used high-resolution mass spectrometry to map how the proteomes of murine neutrophils change comparatively across BM, blood, and the alveolar airspaces to deploy an influenza lethality-associated response. Following lethal influenza infection, mature neutrophils undergo two infection-dependent and one context-independent compartmental transitions. Translation of type I IFN-stimulated genes is first elevated in the BM, preceding the context-independent downregulation of ribosomal proteins observed in blood neutrophils. Following alveolar airspace infiltration, the bronchoalveolar lavage (BAL) neutrophil proteome is further characterized by a limited increase in type I IFN-stimulated and metal-sequestering proteins as well as a decrease in degranulation-associated proteins. An influenza-selective and dose-dependent increase in antiviral and lipid metabolism-associated proteins was also observed in BAL neutrophils, indicative of a modest capacity for pathogen response tuning. Altogether, our study provides new and comprehensive evidence that the BAL neutrophil proteome is shaped by BM neutrophil maturation as well as subsequent compartmental transitions following lethal influenza infection.


Assuntos
Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Infecções por Orthomyxoviridae/imunologia , Proteômica/métodos , Animais , Células da Medula Óssea/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Camundongos Endogâmicos C57BL
15.
Proc Natl Acad Sci U S A ; 116(31): 15469-15474, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311867

RESUMO

BCL-2 family proteins regulate the mitochondrial apoptotic pathway. BOK, a multidomain BCL-2 family protein, is generally believed to be an adaptor protein similar to BAK and BAX, regulating the mitochondrial permeability transition during apoptosis. Here we report that BOK is a positive regulator of a key enzyme involved in uridine biosynthesis; namely, uridine monophosphate synthetase (UMPS). Our data suggest that BOK expression enhances UMPS activity, cell proliferation, and chemosensitivity. Genetic deletion of Bok results in chemoresistance to 5-fluorouracil (5-FU) in different cell lines and in mice. Conversely, cancer cells and primary tissues that acquire resistance to 5-FU down-regulate BOK expression. Furthermore, we also provide evidence for a role for BOK in nucleotide metabolism and cell cycle regulation. Our results have implications in developing BOK as a biomarker for 5-FU resistance and have the potential for the development of BOK-mimetics for sensitizing 5-FU-resistant cancers.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Uridina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Mamíferos , Camundongos , Complexos Multienzimáticos/metabolismo , Orotato Fosforribosiltransferase/metabolismo , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína Supressora de Tumor p53/metabolismo
16.
Br J Pharmacol ; 176(14): 2465-2481, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30932177

RESUMO

BACKGROUND AND PURPOSE: Expression of the pro-fibrotic galectin-3 and the pro-apoptotic BIM is elevated in diseased heart or after ß-adrenoceptor stimulation, but the underlying mechanisms are unclear. This question was addressed in the present study. EXPERIMENTAL APPROACH: Wild-type mice and mice with cardiac transgenic expression of ß2 -adrenoceptors, mammalian sterile-20 like kinase 1 (Mst1) or dominant-negative Mst1, and non-specific galectin-3 knockout mice were used. Effects of the ß-adrenoceptor agonist isoprenaline or ß-adrenoceptor antagonists were studied. Rat cardiomyoblasts (H9c2) were used for mechanistic exploration. Biochemical assays were performed. KEY RESULTS: Isoprenaline treatment up-regulated expression of galectin-3 and BIM, and this was inhibited by non-selective or selective ß-adrenoceptor antagonists (by 60-70%). Cardiac expression of galectin-3 and BIM was increased in ß2 -adrenoceptor transgenic mice. Isoprenaline-induced up-regulation of galectin-3 and BIM was attenuated by Mst1 inactivation, but isoprenaline-induced galectin-3 expression was exaggerated by transgenic Mst1 activation. Pharmacological or genetic activation of ß-adrenoceptors induced Mst1 expression and yes-associated protein (YAP) phosphorylation. YAP hyper-phosphorylation was also evident in Mst1 transgenic hearts with up-regulated expression of galectin-3 (40-fold) and BIM as well as up-regulation of many YAP-target genes by RNA sequencing. In H9c2 cells, isoprenaline induced YAP phosphorylation and expression of galectin-3 and BIM, effects simulated by forskolin but abolished by PKA inhibitors, and YAP knockdown induced expression of galectin-3 and BIM. CONCLUSIONS AND IMPLICATIONS: Stimulation of cardiac ß-adrenoceptors activated the Mst1/Hippo pathway leading to YAP hyper-phosphorylation with enhanced expression of galectin-3 and BIM. This signalling pathway would have therapeutic potential. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.


Assuntos
Proteína 11 Semelhante a Bcl-2/metabolismo , Doenças Cardiovasculares/metabolismo , Galectina 3/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Transdução de Sinais , Regulação para Cima , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Proteína 11 Semelhante a Bcl-2/antagonistas & inibidores , Doenças Cardiovasculares/tratamento farmacológico , Carvedilol/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Galectina 3/antagonistas & inibidores , Galectina 3/deficiência , Isoproterenol/administração & dosagem , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Propanolaminas/farmacologia , Propranolol/farmacologia , Ratos , Receptores Adrenérgicos beta 3/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
17.
Immunol Cell Biol ; 96(9): 981-993, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29738610

RESUMO

The role of the immunoproteasome is perceived as confined to adaptive immune responses given its ability to produce peptides ideal for MHC Class-I binding. Here, we demonstrate that the immunoproteasome subunit, LMP2, has functions beyond its immunomodulatory role. Using LMP2-deficient mice, we demonstrate that LMP2 is crucial for lymphocyte development and survival in the periphery. Moreover, LMP2-deficient lymphocytes show impaired degradation of key BH3-only proteins, resulting in elevated levels of pro-apoptotic BIM and increased cell death. Interestingly, LMP2 is the sole immunoproteasome subunit required for BIM degradation. Together, our results suggest LMP2 has important housekeeping functions and represents a viable therapeutic target for cancer.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/imunologia , Cisteína Endopeptidases/imunologia , Linfócitos/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Animais , Western Blotting , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Cisteína Endopeptidases/deficiência , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/deficiência
19.
Cell Death Differ ; 24(5): 944-950, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28409774

RESUMO

The endoplasmic reticulum (ER) stress response constitutes cellular reactions triggered by a wide variety of stimuli that disturb folding of proteins, often leading to apoptosis. ER stress-induced apoptotic cell death is thought to be an important contributor to many human pathological conditions. The molecular mechanism of this apoptosis process has been highly controversial with both the receptor and the mitochondrial pathways being implicated. Using knockout mouse models and RNAi-mediated gene silencing in cell lines, our group and others had demonstrated the importance of the mitochondrial apoptotic pathway in ER stress-induced cell death, particularly the role of the pro-apoptotic BH3-only BCL-2 family members, BIM and PUMA. However, a recent report suggested a central role for the death receptor, DR5, activated in a ligand-independent manner, and the initiator caspase, caspase-8, in ER stress-induced cell death. This prompted us to re-visit our previous observations and attempt to reproduce the newly published findings. Here we report that the mitochondrial apoptotic pathway, activated by BH3-only proteins, is essential for ER stress-induced cell death and that, in contrast to the previous report, DR5 as well as caspase-8 are not required for this process.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/genética , Proteína 11 Semelhante a Bcl-2/genética , Estresse do Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas/genética , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2/metabolismo , Brefeldina A/farmacologia , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Transformada , Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células HCT116 , Humanos , Células MCF-7 , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Tapsigargina/farmacologia , Tunicamicina/farmacologia
20.
Sci Rep ; 6: 34702, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27694827

RESUMO

Sepsis-induced lymphopenia is a major cause of morbidities in intensive care units and in populations with chronic conditions such as renal failure, diabetes, HIV and alcohol abuse. Currently, other than supportive care and antibiotics, there are no treatments for this condition. We developed an in vitro assay to understand the role of the ER-stress-mediated apoptosis process in lymphocyte death during polymicrobial sepsis, which was reproducible in in vivo mouse models. Modulating ER stress using chemical chaperones significantly reduced the induction of the pro-apoptotic protein Bim both in vitro and in mice. Furthermore, in a 'two-hit' pneumonia model in mice, we have been able to demonstrate that administration of the chemical chaperone TUDCA helped to maintain lymphocyte homeostasis by significantly reducing lymphocyte apoptosis and this correlated with four-fold improvement in survival. Our results demonstrate a novel therapeutic opportunity for treating sepsis-induced lymphopenia in humans.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Sepse/prevenção & controle , Ácido Tauroquenodesoxicólico/farmacologia , Animais , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Colagogos e Coleréticos/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células RAW 264.7 , Sepse/metabolismo , Sepse/microbiologia , Análise de Sobrevida , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...