Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 57(26): 3752-3763, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29741885

RESUMO

The natural aminocarboxylic acid product ethylenediamine- N, N'-disuccinic acid [( S, S)-EDDS] is able to form a stable complex with metal ions, making it an attractive biodegradable alternative for the synthetic metal chelator ethylenediaminetetraacetic acid (EDTA), which is currently used on a large scale in numerous applications. Previous studies have demonstrated that biodegradation of ( S, S)-EDDS may be initiated by an EDDS lyase, converting ( S, S)-EDDS via the intermediate N-(2-aminoethyl)aspartic acid (AEAA) into ethylenediamine and two molecules of fumarate. However, current knowledge of this enzyme is limited because of the absence of structural data. Here, we describe the identification and characterization of an EDDS lyase from Chelativorans sp. BNC1, which has a broad substrate scope, accepting various mono- and diamines for addition to fumarate. We report crystal structures of the enzyme in an unliganded state and in complex with formate, succinate, fumarate, AEAA, and ( S, S)-EDDS. The structures reveal a tertiary and quaternary fold that is characteristic of the aspartase/fumarase superfamily and support a mechanism that involves general base-catalyzed, sequential two-step deamination of ( S, S)-EDDS. This work broadens our understanding of mechanistic diversity within the aspartase/fumarase superfamily and will aid in the optimization of EDDS lyase for asymmetric synthesis of valuable (metal-chelating) aminocarboxylic acids.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Nitrogênio Liases/metabolismo , Etilenodiaminas/metabolismo , Phyllobacteriaceae/enzimologia , Succinatos/metabolismo , Proteínas de Bactérias/química , Carbono-Nitrogênio Liases/química , Cristalografia por Raios X , Etilenodiaminas/química , Formiatos/química , Formiatos/metabolismo , Fumaratos/química , Fumaratos/metabolismo , Modelos Moleculares , Phyllobacteriaceae/química , Phyllobacteriaceae/metabolismo , Conformação Proteica , Especificidade por Substrato , Succinatos/química
2.
Microb Cell Fact ; 15: 60, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27059824

RESUMO

BACKGROUND: Erythritol is a polyol that is used in the food and beverage industry. Due to its non-caloric and non-cariogenic properties, the popularity of this sweetener is increasing. Large scale production of erythritol is currently based on conversion of glucose by selected fungi. In this study, we describe a biotechnological process to produce erythritol from light and CO2, using engineered Synechocystis sp. PCC6803. METHODS: By functionally expressing codon-optimized genes encoding the erythrose-4-phosphate phosphatase TM1254 and the erythrose reductase Gcy1p, or GLD1, this cyanobacterium can directly convert the Calvin cycle intermediate erythrose-4-phosphate into erythritol via a two-step process and release the polyol sugar in the extracellular medium. Further modifications targeted enzyme expression and pathway intermediates. CONCLUSIONS: After several optimization steps, the best strain, SEP024, produced up to 2.1 mM (256 mg/l) erythritol, excreted in the medium.


Assuntos
Eritritol/biossíntese , Engenharia Genética/métodos , Synechocystis/crescimento & desenvolvimento , Synechocystis/genética , Synechocystis/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Processos Autotróficos , Escherichia coli , Luz , Organismos Geneticamente Modificados , Fotossíntese/genética , Fosfatos Açúcares/metabolismo , Edulcorantes/metabolismo
3.
J Biotechnol ; 184: 100-2, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-24858679

RESUMO

Deletion of pathways for carbon-storage in the cyanobacterium Synechocystis sp. PCC6803 has been suggested as a strategy to increase the size of the available pyruvate pool for the production of (heterologous) chemical commodities. Here we show that deletion of the pathway for glycogen synthesis leads to a twofold increased lactate production rate, under nitrogen-limited conditions, whereas impairment of polyhydroxybutyrate synthesis does not.


Assuntos
Glicogênio/biossíntese , Hidroxibutiratos/metabolismo , Ácido Láctico/metabolismo , Fotossíntese/genética , Sequestro de Carbono/genética , Glicogênio/genética , Engenharia Metabólica , Mutação , Nitrogênio/metabolismo , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento , Synechocystis/metabolismo
4.
Chemistry ; 19(34): 11148-52, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23852946

RESUMO

Enzymatic amino acid synthesis: Kinetic resolution and asymmetric synthesis of various valuable 3-substituted aspartic acids, which were obtained in fair to good yields with diastereomeric ratio values of up to >98:2 and enantiomeric excess values of up to >99 %, by using engineered methylaspartate ammonia lyases are described. These biocatalytic methodologies for the selective preparation of aspartic acid derivatives appear to be attractive alternatives for existing chemical methods.


Assuntos
Amônia-Liases/metabolismo , Ácido Aspártico/biossíntese , Aminação , Substituição de Aminoácidos , Amônia-Liases/genética , Ácido Aspártico/química , Biocatálise , Cinética , Estereoisomerismo
5.
ACS Chem Biol ; 7(10): 1618-28, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22834890

RESUMO

Ammonia lyases catalyze the formation of α,ß-unsaturated bonds by the elimination of ammonia from their substrates. This conceptually straightforward reaction has been the emphasis of many studies, with the main focus on the catalytic mechanism of these enzymes and/or the use of these enzymes as catalysts for the synthesis of enantiomerically pure α-amino acids. In this Review aspartate ammonia lyase and 3-methylaspartate ammonia lyase, which represent two different enzyme superfamilies, are discussed in detail. In the past few years, the three-dimensional structures of these lyases in complex with their natural substrates have revealed the details of two elegant catalytic strategies. These strategies exploit similar deamination mechanisms that involve general-base catalyzed formation of an enzyme-stabilized enolate anion (aci-carboxylate) intermediate. Recent progress in the engineering and application of these enzymes to prepare enantiopure l-aspartic acid derivatives, which are highly valuable as tools for biological research and as chiral building blocks for pharmaceuticals and food additives, is also discussed.


Assuntos
Amônia-Liases/metabolismo , Aspartato Amônia-Liase/metabolismo , Amônia/química , Amônia-Liases/química , Aspartato Amônia-Liase/química , Bactérias/enzimologia , Biocatálise , Domínio Catalítico , Modelos Moleculares , Engenharia de Proteínas
6.
Biochemistry ; 51(21): 4237-43, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22551392

RESUMO

Members of the aspartase/fumarase superfamily share a common tertiary and quaternary fold, as well as a similar active site architecture; the superfamily includes aspartase, fumarase, argininosuccinate lyase, adenylosuccinate lyase, δ-crystallin, and 3-carboxy-cis,cis-muconate lactonizing enzyme (CMLE). These enzymes all process succinyl-containing substrates, leading to the formation of fumarate as the common product (except for the CMLE-catalyzed reaction, which results in the formation of a lactone). In the past few years, X-ray crystallographic analysis of several superfamily members in complex with substrate, product, or substrate analogues has provided detailed insights into their substrate binding modes and catalytic mechanisms. This structural work, combined with earlier mechanistic studies, revealed that members of the aspartase/fumarase superfamily use a common catalytic strategy, which involves general base-catalyzed formation of a stabilized aci-carboxylate (or enediolate) intermediate and the participation of a highly flexible loop, containing the signature sequence GSSxxPxKxN (named the SS loop), in substrate binding and catalysis.


Assuntos
Aspartato Amônia-Liase/química , Aspartato Amônia-Liase/metabolismo , Fumarato Hidratase/química , Fumarato Hidratase/metabolismo , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Sequência de Aminoácidos , Argininossuccinato Liase/química , Argininossuccinato Liase/genética , Argininossuccinato Liase/metabolismo , Aspartato Amônia-Liase/genética , Catálise , Domínio Catalítico , Sequência Conservada , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fumarato Hidratase/genética , Humanos , Liases Intramoleculares/química , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , delta-Cristalinas/química , delta-Cristalinas/genética , delta-Cristalinas/metabolismo
7.
Appl Microbiol Biotechnol ; 94(2): 385-97, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22005738

RESUMO

Methylaspartate ammonia lyase (MAL; EC 4.3.1.2) catalyzes the reversible addition of ammonia to mesaconate to give (2S,3S)-3-methylaspartate and (2S,3R)-3-methylaspartate as products. MAL is of considerable biocatalytic interest because of its potential use for the asymmetric synthesis of substituted aspartic acids, which are important building blocks for synthetic enzymes, peptides, chemicals, and pharmaceuticals. Here, we have cloned the gene encoding MAL from the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. The enzyme (named Ch-MAL) was overproduced in Escherichia coli and purified to homogeneity by immobilized metal affinity chromatography. Ch-MAL is a dimer in solution, consisting of two identical subunits (∼49 kDa each), and requires Mg(2+) and K(+) ions for maximum activity. The optimum pH and temperature for the deamination of (2S,3S)-3-methylaspartic acid are 9.0 and 70°C (k (cat) = 78 s(-1) and K (m) = 16 mM). Heat inactivation assays showed that Ch-MAL is stable at 50°C for >4 h, which is the highest thermal stability observed among known MALs. Ch-MAL accepts fumarate, mesaconate, ethylfumarate, and propylfumarate as substrates in the ammonia addition reaction. The enzyme also processes methylamine, ethylamine, hydrazine, hydroxylamine, and methoxylamine as nucleophiles that can replace ammonia in the addition to mesaconate, resulting in the corresponding N-substituted methylaspartic acids with excellent diastereomeric excess (>98% de). This newly identified thermostable MAL appears to be a potentially attractive biocatalyst for the stereoselective synthesis of aspartic acid derivatives on large (industrial) scale.


Assuntos
Amônia-Liases/metabolismo , Bactérias Gram-Positivas/enzimologia , Amônia-Liases/genética , Cromatografia de Afinidade , Clonagem Molecular , Ativadores de Enzimas/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Bactérias Gram-Positivas/química , Bactérias Gram-Positivas/genética , Concentração de Íons de Hidrogênio , Magnésio/metabolismo , Peso Molecular , Potássio/metabolismo , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura
8.
FEBS J ; 276(11): 2994-3007, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19490103

RESUMO

Aspartate ammonia lyases (also referred to as aspartases) catalyze the reversible deamination of L-aspartate to yield fumarate and ammonia. In the proposed mechanism for these enzymes, an active site base abstracts a proton from C3 of L-aspartate to form an enzyme-stabilized enediolate intermediate. Ketonization of this intermediate eliminates ammonia and yields the product, fumarate. Although two crystal structures of aspartases have been determined, details of the catalytic mechanism have not yet been elucidated. In the present study, eight active site residues (Thr101, Ser140, Thr141, Asn142, Thr187, His188, Lys324 and Asn326) were mutated in the structurally characterized aspartase (AspB) from Bacillus sp. YM55-1. On the basis of a model of the complex in which L-aspartate was docked manually into the active site of AspB, the residues responsible for binding the amino group of L-aspartate were predicted to be Thr101, Asn142 and His188. This postulate is supported by the mutagenesis studies: mutations at these positions resulted in mutant enzymes with reduced activity and significant increases in the K(m) for L-aspartate. Studies of the pH dependence of the kinetic parameters of AspB revealed that a basic group with a pK(a) of approximately 7 and an acidic group with a pK(a) of approximately 10 are essential for catalysis. His188 does not play the typical role of active site base or acid because the H188A mutant retained significant activity and displayed an unchanged pH-rate profile compared to that of wild-type AspB. Mutation of Ser140 and Thr141 and kinetic analysis of the mutant enzymes revealed that these residues are most likely involved in substrate binding and in stabilizing the enediolate intermediate. Mutagenesis studies corroborate the essential role of Lys324 because all mutations at this position resulted in mutant enzymes that were completely inactive. The substrate-binding model and kinetic analysis of mutant enzymes suggest that Thr187 and Asn326 assist Lys324 in binding the C1 carboxylate group of the substrate. A catalytic mechanism for AspB is presented that accounts for the observed properties of the mutant enzymes. Several features of the mechanism that are also found in related enzymes are discussed in detail and may help to define a common substrate binding mode for the lyases in the aspartase/fumarase superfamily.


Assuntos
Aspartato Amônia-Liase/metabolismo , Bacillus/enzimologia , Proteínas de Bactérias/metabolismo , Mutagênese Sítio-Dirigida/métodos , Substituição de Aminoácidos , Asparagina/genética , Asparagina/metabolismo , Aspartato Amônia-Liase/antagonistas & inibidores , Aspartato Amônia-Liase/genética , Ácido Aspártico/metabolismo , Bacillus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Catálise/efeitos dos fármacos , Domínio Catalítico/genética , Dicroísmo Circular , Histidina/genética , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Lisina/genética , Lisina/metabolismo , Malatos/farmacologia , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nitrocompostos/farmacologia , Propionatos/farmacologia , Estrutura Terciária de Proteína , Serina/genética , Serina/metabolismo , Especificidade por Substrato , Treonina/genética , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...