Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276835

RESUMO

The modification of the surface topography at the micro- and nanoscale is a widely established as one of the best ways to engineering the surface of materials, to improve the tribological performances of materials in terms of load capacity and friction. The present paper reviews the state of the art on laser surface texturing by exploiting the technique of direct laser writing for tailoring the coefficient of friction, highlighting the effect of the textures' arrangement on the lubricated conformal and non-conformal contact behavior.

2.
Acta Biomater ; 125: 90-99, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33676047

RESUMO

Loading-induced cartilage exudation causes loss of fluid from the tissue, joint space thinning and, in a long term prospective, the insurgence of osteoarthritis. Fortunately, experiments show that joints recover interstitial fluid and thicken during articulation after static loading, thus reversing the exudation process. Here, we provide the first original theoretical explanation to this crucial phenomenon, by implementing a numerical model capable of accounting for the multiscale porous lubrication occurring in joints. We prove that sliding-induced rehydration occurs because of hydrodynamic reasons and is specifically related to a wedge effect at the contact inlet. Furthermore, numerically predicted rehydration rates are consistent with experimentally measured rates and corroborate the robustness of the model here proposed. The paper provides key information, in terms of fundamental lubrication multiscale mechanisms, to understand the rehydration of cartilage and, more generally, of any biological tissue exhibiting a significant porosity: such a theoretical framework is, thus, crucial to inform the design of new effective cartilage-mimicking biomaterials. STATEMENT OF SIGNIFICANCE: Motion and, precisely, joints articulation ensures that cartilage tissues preserve adequate level of hydration and, thus, maintain excellent mechanical properties in terms of high resilience, considerable load-carrying capacity and remarkably low friction. Conversely, when statically loaded, cartilage starts to exudate, causing joint space thinning and, in the long term, possible osteoarthritis; joints motion is, thus, the key to prevent the degradation of the tissues. By developing a numerical multiscale lubrication theory, and by corroborating this approach with experiments, we provide the first original theoretical explanation to this motion-induced cartilage rehydration mechanism. Assessing the rehydration hydrodynamic origin is, in fact, fundamental not only to understand the joints physiology, but also to highlight a key requirement for cartilage-mimicking biomaterials.


Assuntos
Cartilagem Articular , Hidrodinâmica , Hidratação , Fricção , Lubrificação , Estudos Prospectivos , Estresse Mecânico , Líquido Sinovial
3.
Materials (Basel) ; 13(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142947

RESUMO

Frictional performances of different textures, including axisymmetric and directional patterns, have been tested in the mixed and the hydrodynamic lubrication regimes. Experimental results, corroborated by numerical simulations, show that the leading parameter is the geometrical pattern void ratio since a large number of dimples offers, at low speed, a trap for debris whereas, at high speed, due to the flow expansion in each micro-hole, fosters a fluid pressure drop, the consequent insurgence of micro-cavitation and, ultimately, the reductions of the shear stresses. Furthermore, in this paper, it is shown that, by means of directional textures, equivalent hydrodynamic wedges can be built up, thus establishing different friction performances depending on the flow direction.

4.
Eur Phys J E Soft Matter ; 42(6): 80, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31240407

RESUMO

Viscoelastic rheology can have great effects on the contact mechanics of randomly rough surfaces with anisotropic statistical properties. In this paper, we investigate such effects in the framework of Persson's theory. We calculate the forces that arise in viscoelastic contacts because of the viscous dissipation occurring in the bulk material. Interestingly, the non-symmetric distribution of the normal contact pressure entails the occurrence of a force in the direction perpendicular to the sliding one. Such force does not carry out any work, and hence does not dissipate energy, but it is important for the global equilibrium of the system. Results are also compared with numerical exact calculations finding a quite good agreement. However, with the present method, we cannot capture the stretching of the contact clusters due to the viscoelasticity and, hence, the resulting change in the anisotropy of the deformed surface.

5.
ACS Appl Mater Interfaces ; 9(48): 42287-42295, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29111633

RESUMO

Classical lubrication theory is unable to explain a variety of phenomena and experimental observations involving soft viscoelastic materials, which are ubiquitous and increasingly used in e.g. engineering and biomedical applications. These include unexpected ruptures of the lubricating film and a friction-speed dependence, which cannot be elucidated by means of conventional models, based on time-independent stress-strain constitutive laws for the lubricated solids. A new modeling framework, corroborated through experimental measurements enabled via an interferometric technique, is proposed to address these issues: Solid/fluid interactions are captured thanks to a coupling strategy that makes it possible to study the effect that solid viscoelasticity has on fluid film lubrication. It is shown that a newly defined visco-elasto-hydrodynamic lubrication (VEHL) regime can be experienced depending on the degree of coupling between the fluid flow and the solid hysteretic response. Pressure distributions show a marked asymmetry with a peak at the flow inlet, and correspondingly, the film thickness reveals a pronounced shrinkage at the flow outlet; friction is heavily influenced by the viscoelastic hysteresis which is experienced in addition to the viscous losses. These features show significant differences with respect to the classical elasto-hydrodynamic lubrication (EHL) regime response that would be predicted when solid viscoelasticity is neglected. A simple yet powerful criterion to assess the importance of viscoelastic solid contributions to soft matter lubrication is finally proposed.

6.
Sci Rep ; 7(1): 8333, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827529

RESUMO

Reciprocating motion between viscoelastic solids occurs in a number of systems and, in particular, in all the dampers which exploits, as a physical principle, the viscoelastic dissipation. So far, any attempt to predict the behavour of this field of dampers relies on approximate methodologies and, often, on a steady-state approach, with a consequent poor understanding of the phenomenon. Here, we develop a methodology capable of simulating the actual mechanics of the problem and, in particular, we shed light on how the presence of not fully relaxed viscoelastic regions, during the punch motion, determine the viscoelastic dissipation. The latter is shown to be dependent ultimately on two dimensionless parameters, i.e. the maximum speed in the cycle and the frequency. Finally, the importance of considering a rough interface is enlightened.

7.
Phys Rev E ; 93: 043003, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27176381

RESUMO

A theory of reciprocating contacts for linear viscoelastic materials is presented. Results are discussed for the case of a rigid sphere sinusoidally driven in sliding contact with a viscoelastic half-space. Depending on the size of the contact, the frequency and amplitude of the reciprocating motion, and on the relaxation time of the viscoelastic body, we establish that the contact behavior may range from the steady-state viscoelastic solution, in which traction forces always oppose the direction of the sliding rigid punch, to a more elaborate trend, which is due to the strong interaction between different regions of the path covered during the reciprocating motion. Practical implications span a number of applications, ranging from seismic engineering to biotechnology.

8.
Beilstein J Nanotechnol ; 5: 1725-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383283

RESUMO

In the present paper we propose a generalization of the model developed in Afferrante, L.; Carbone, G.; Demelio, G.; Pugno, N. Tribol. Lett. 2013, 52, 439-447 to take into account the effect of the pre-tension in the tape. A detailed analysis of the peeling process shows the existence of two possible detachment regimes: one being stable and the other being unstable, depending on the initial configuration of the tape. In the stability region, as the peeling process advances, the peeling angle reaches a limiting value, which only depends on the geometry, on the elastic modulus of the tape and on the surface energy of adhesion. Vice versa, in the unstable region, depending on the initial conditions of the system, the tape can evolve towards a state of complete detachment or fail before reaching a state of equilibrium with complete adhesion. We find that the presence of pre-tension in the tape does not modify the stability behavior of the system, but significantly affects the pull-off force which can be sustained by the tape before complete detachment. Moreover, above a critical value of the pre-tension, which depends on the surface energy of adhesion, the tape will tend to spontaneously detach from the substrate. In this case, an external force is necessary to avoid spontaneous detachment and make the tape adhering to the substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...