Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Food Sci ; 8: 100740, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694557

RESUMO

Resveratrol is a natural phenolic compound that belongs to stilbenoid group found in diverse plants. Health benefits and therapeutic potentials of resveratrol have been widely recognized in various diseases. In kidney stone disease, it can alleviate oxalate-induced hyperproduction of free radicals in renal epithelial cells. Nevertheless, its direct effects on calcium oxalate (CaOx) crystal, which is the major stone component, remained unclear. This study therefore addressed the direct effects of resveratrol (at 1, 10 or 100 µM) on each step of CaOx kidney stone formation. The results revealed that resveratrol had no significant effects on CaOx crystallization. However, resveratrol significantly decreased CaOx crystal growth and adhesion to renal epithelial cells at all concentrations, and induced crystal internalization into the cells (a process related to crystal degradation by endolysosomes) in a concentration-dependent manner. On the other hand, resveratrol promoted crystal aggregation. These data indicate that resveratrol serves as a dual modulator on CaOx stone formation. While it inhibits CaOx stone development by reducing crystal growth and adhesion to renal cells and by inducing crystal internalization into the cells, resveratrol promotes crystal aggregation, which is one of the mechanisms leading to kidney stone formation.

2.
Comput Struct Biotechnol J ; 21: 5851-5867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074474

RESUMO

Trigonelline is a phytoalkaloid commonly found in green and roasted coffee beans. It is also found in decaffeinated coffee. Previous report has shown that extract from trigonelline-rich plant exhibits anti-lithiatic effects in a nephrolithiatic rat model. Nevertheless, cellular mechanisms underlying the anti-lithiatic properties of trigonelline remain hazy. Herein, we used nanoLC-ESI-Qq-TOF MS/MS and MaxQuant-based quantitative proteomics to identify trigonelline-induced changes in protein expression in MDCK renal cells. From a total of 1006 and 1011 proteins identified from control and trigonelline-treated cells, respectively, levels of 62 (23 upregulated and 39 downregulated) proteins were significantly changed by trigonelline. Functional enrichment and reactome pathway analyses suggested that these 62 altered proteins were related to stress response, cell cycle and cell polarity. Functional validation by corresponding experimental assays revealed that trigonelline prevented calcium oxalate monohydrate crystal-induced renal cell deteriorations by inhibiting crystal-induced overproduction of intracellular reactive oxygen species, G0/G1 to G2/M cell cycle shift, tight junction disruption, and epithelial-mesenchymal transition. These findings provide cellular mechanisms and convincing evidence for the renoprotective effects of trigonelline, particularly in kidney stone prevention.

3.
Exp Hematol Oncol ; 11(1): 62, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36154899

RESUMO

Increasing evidence of association between kidney stone disease (KSD) and renal cell carcinoma (RCC) has been reported. Nevertheless, mechanism underlying such association remained unknown. Herein, we investigated the effects of calcium oxalate monohydrate (COM), a major crystalline component causing KSD, on induction of carcinogenic features in non-cancerous renal cells. COM crystals induced morphological changes from epithelial to fibroblast-like spindle shape. Additionally, COM increased spindle index and mesenchymal markers (fibronectin and vimentin) but declined epithelial markers (E-cadherin and zonula occludens-1). Moreover, COM down-regulated ARID1A, a tumor suppressor gene recently reported to be reversely associated with RCC, at both mRNA and protein levels. COM also down-regulated other RCC-related tumor suppressor genes, PTEN and VHL, but up-regulated oncogene TPX2. Finally, COM enhanced invading capability, cell-aggregate formation, chemoresistance to cisplatin, and secretion of an angiogenic factor (VEGF). These data indicate that COM crystals trigger epithelial-mesenchymal transition (EMT) and several carcinogenic features in the non-cancerous renal cells. These mechanisms may explain and strengthen the association between KSD and RCC.

4.
Plant Physiol Biochem ; 121: 118-127, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29100101

RESUMO

Cassava (Manihot esculenta Crantz) is an important economic crop in tropical countries. Although cassava is considered a drought-tolerant crop that can grow in arid areas, the impact of drought can significantly reduce the growth and yield of cassava storage roots. The discovery of aquaporin molecules (AQPs) in plants has resulted in a paradigm shift in the understanding of plant-water relationships, whereas the relationship between aquaporin and drought resistance in cassava still remains elusive. To investigate the potential role of aquaporin in cassava under water-deficit conditions, 45 putative MeAQPs were identified in the cassava genome. Six members of MeAQPs, containing high numbers of water stress-responsive motifs in their promoter regions, were selected for a gene expression study. Two cassava cultivars, which showed different degrees of responses to water-deficit stress, were used to test in in vitro and potted plant systems. The differential expression of all candidate MeAQPs were found in only leaves from the potted plant system were consistent with the relative water content and with the stomatal closure profile of the two cultivars. MePIP2-1 and MePIP2-10 were up-regulated and this change in their expression might regulate a special signal for water efflux out of guard cells, thus inducing stomatal closure under water-deficit conditions. In addition, the expression profiles of genes in the ABA-dependent pathway revealed an essential correlation with stomatal closure. The potential functions of MeAQPs and candidate ABA-dependent pathway genes in response to water deficit in the more tolerant cassava cultivar were discussed.


Assuntos
Aquaporinas , Estudo de Associação Genômica Ampla , Manihot , Proteínas de Plantas , Estresse Fisiológico , Água/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...