Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 138(1): 44-53, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614830

RESUMO

Kopyor is a coconut with unique characteristics from Indonesia, one of the largest coconut producers in the world. Kopyor is an edible mature coconut with soft endosperm. Although this fruit is one of the most popular coconuts in the world, there are limited studies on its properties, including its sensory attributes and metabolite profiles. This study investigates the characteristics of kopyor using sensory evaluation, a widely targeted metabolomics approach, and multivariate analysis. The liquid (water) and solid (flesh) endosperms were collected as the samples. The results showed that kopyor has characteristics that distinguish it from normal mature and young coconuts. Kopyor water has a milky, creamy, nutty, bitter, and astringent taste with an oily aftertaste and mouthfeel. Kopyor flesh is soft and moist and gives a sandy mouth feel. This study analyzed the sensory attributes of the kopyor endosperm for the first time and compared it with those of normal mature and young coconuts. A gas chromatography mass spectrometry analysis showed that kopyor contained wider variety of metabolites than normal coconuts of the same age. Based on the differential analysis and orthogonal projections to latent structures-regression, kopyor water was characterized by the accumulation of flavor-related metabolites, such as amino acids and organic acids, which contributed to its sensory complexity. This study solidified the effects of maturation and endosperm type on metabolite accumulation in kopyor endosperm. This pioneering information will lead to the future use of kopyor and other unique coconuts worldwide for food, contributing to the sustainability of the coconut industry.


Assuntos
Cocos , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Paladar , Cocos/química , Metabolômica/métodos , Indonésia , Endosperma/metabolismo , Endosperma/química , Humanos
2.
Food Chem ; 446: 138744, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432131

RESUMO

This study introduces a multidisciplinary approach to investigate bioactive food metabolites often overlooked due to their low concentrations. We integrated an in-house food metabolite library (n = 494), a human metabolite library (n = 891) from epidemiological studies, and metabolite pharmacological databases to screen for food metabolites with potential bioactivity. We identified six potential metabolites, including meglutol (3-hydroxy-3-methylglutarate), an understudied low-density lipoprotein (LDL)-lowering compound. We further focused on meglutol as a case study to showcase the range of characterizations achievable with this approach. Green pea tempe was identified to contain the highest meglutol concentration (21.8 ± 4.6 mg/100 g). Furthermore, we identified a significant cross-sectional association between plasma meglutol (per 1-standard deviation) and lower LDL cholesterol in two Hispanic adult cohorts (n = 1,628) (ß [standard error]: -5.5 (1.6) mg/dl, P = 0.0005). These findings highlight how multidisciplinary metabolomics can serve as a systematic tool for discovering and enhancing bioactive metabolites in food, such as meglutol, with potential applications in personalized dietary approaches for disease prevention.


Assuntos
Meglutol , Alimentos de Soja , Humanos , Meglutol/metabolismo , Meglutol/farmacologia , Estudos Transversais , Indonésia , Metabolômica
3.
J Gen Appl Microbiol ; 69(4): 185-195, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36935115

RESUMO

Although n-butanol (BuOH) is an ideal fuel because of its superior physical properties, it has toxicity to microbes. Previously, a Synechococcus elongatus PCC 7942 derivative strain that produces BuOH from CO2 was developed by introducing six heterologous genes (BUOH-SE strain). To identify the bottleneck in BuOH production, the effects of BuOH production and its toxicity on central metabolism and the photosystem were investigated. Parental (WT) and BUOH-SE strains were cultured under autotrophic conditions. Consistent with the results of a previous study, BuOH production was observed only in the BUOH-SE strain. Isotopically non-stationary 13C-metabolic flux analysis revealed that the CO2 fixation rate was much larger than the BuOH production rate in the BUOH-SE strain (1.70 vs 0.03 mmol gDCW-1 h-1), implying that the carbon flow for BuOH biosynthesis was less affected by the entire flux distribution. No large difference was observed in the flux of metabolism between the WT and BUOH-SE strains. Contrastingly, in the photosystem, the chlorophyll content and maximum O2 evolution rate per dry cell weight of the BUOH-SE strain were decreased to 81% and 43% of the WT strain, respectively. Target proteome analysis revealed that the amounts of some proteins related to antennae (ApcA, ApcD, ApcE, and CpcC), photosystem II (PsbB, PsbU, and Psb28-2), and cytochrome b6f complex (PetB and PetC) in photosystems decreased in the BUOH-SE strain. The activation of photosynthesis would be a novel approach for further enhancing BuOH production in S. elongatus PCC 7942.


Assuntos
1-Butanol , Proteoma , Proteoma/genética , Complexo Citocromos b6f , Dióxido de Carbono , Fotossíntese , Butanóis
4.
Metabolomics ; 19(11): 90, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880543

RESUMO

INTRODUCTION: The cupping test is a widely used method for quality assessment of Arabica coffee. However, the cupping test is limited by the low number of certified panelists and the low throughput. Therefore, an analytical-based quality assessment may be a promising tool to complement the cupping test. A present, there is no report investigating quality marker candidates, focusing only on "specialty" grade Arabica coffee from Indonesia. OBJECTIVE: This study identified the potential quality marker(s) in Arabica Specialty coffee at different stages (green beans, roasted beans, and brewed coffee. METHODS: The metabolite profiles of ten different Arabica specialty-grade coffees were analyzed with different cup scores using gas chromatography-mass spectrometry (GC/MS). From the ten samples, green coffee beans, roasted coffee beans, and brewed coffee were selected. In addition, an orthogonal projection to latent structure (OPLS) regression analysis was conducted to obtain a potential quality marker based on the variable importance in projection (VIP). The potential quality marker(s) were validated by GC/MS metabolome profiling and OPLS analysis of different sets of samples consisting of 35 Arabica specialty-grade coffee samples. RESULTS: In Arabica coffee samples, the OPLS model of the three stages showed galactinol to have a high VIP score. Galactinol showed a consistent positive correlation with cup scores at all stages of coffee production (green beans, roasted beans, and brewed coffee). The correlation suggests galactinol is a potential quality marker after further validation using different samples. CONCLUSION: GC/MS combined with OPLS regression analysis suggested galactinol as a quality marker and provide an early screening method for Arabica coffee quality that complements the cupping test performed by certified panelists.


Assuntos
Coffea , Metabolômica , Cromatografia Gasosa-Espectrometria de Massas , Coffea/química , Indonésia , Metaboloma
5.
J Biosci Bioeng ; 136(5): 374-382, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689569

RESUMO

Demand for minimally processed fresh fruit is increasing due to its convenience. However, the distribution of fresh-cut fruits is limited because of their short shelf life. Pineapple, a popular tropical fruit, sold in fresh-cut form has a shelf life of approximately 5-7 days at 4 °C. Chitosan, an edible coating, is commonly used to prolong the shelf life of food products. Similarly, the sugar melezitose has been reported to change during pineapple ripening and may play a role in regulating the shelf life of pineapple. However, the direct effects of this sugar have yet to be studied. The objective of this study was to investigate the effect of chitosan coating with melezitose to prolong the shelf life of fresh-cut pineapple. Full-ripe Bogor pineapples from Okinawa, Japan, were cut into cubes and soaked in either chitosan 1.25%, melezitose 5 mg/L, or chitosan+melezitose and stored for 5 days under dark conditions (23.6 ± 0.5 °C; relative humidity, 40.0 ± 10.4%). None of the treatments significantly altered the weight loss or color changes in the fresh-cut fruit. However, treatment significantly altered the primary metabolites, namely quinic acid, sucrose, and xylitol based on orthogonal projection to latent structures data with the screening from p-value score. Moreover, cell-wall metabolism is possibly affected in pineapple cut fruit treated by chitosan-melezitose as shown from metabolite sets enrichment analysis. This study showed that chitosan added with melezitose might have potential to prolong the shelf-life of fresh-cut pineapple, providing a basis for further post-harvest studies of the whole pineapple fruit.

6.
J Biosci Bioeng ; 136(3): 205-212, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37331843

RESUMO

Green soybean, also known as edamame, is a legume with high nutritional and functional value. Despite its growing popularity and potential health benefits, the functionality of green soybean has not been thoroughly studied. Previous research on the functionality of green soybean has largely focused on a limited number of specific, well-studied, bioactive metabolites, without comprehensively investigating the metabolome of this legume. Additionally, very few studies have explored the improvement of the functional value of green soybean. This study aimed to investigate the metabolome profile of green soybean, identify bioactive metabolites, and to further explore the potential improvement of the identified bioactive metabolites using germination and tempe fermentation. A total of 80 metabolites were annotated from green soybean using GC-MS and HPLC-PDA-MS. Among them, 16 important bioactive metabolites were identified: soy isoflavones daidzin, glycitin, genistin, malonyl daidzin, malonyl genistin, malonyl glycitin, acetyl daidzin, acetyl genistin, acetyl glycitin, daidzein, glycitein, and genistein, as well as other metabolites including 3,4-dihydroxybenzoic acid, 3-hydroxyanthranillic acid, 3-hydroxy-3-methylglutaric acid (meglutol), and 4-aminobutyric acid (GABA). Germination and tempe fermentation techniques were employed to potentially improve the concentrations of these bioactive metabolites. While showing improvements in amino acid contents, germination process did not improve bioactive metabolites significantly. In contrast, tempe fermentation was found to significantly increase the concentrations of daidzein, genistein, glycitein, acetyl genistin, acetyl daidzin, 3-hydroxyanthranillic acid, and meglutol (>2-fold increase with p < 0.05) while also improving amino acid levels. This study highlights the potentials of germination and fermentation to improve the functionality of legumes, particularly green soybean.


Assuntos
Glycine max , Isoflavonas , Glycine max/química , Genisteína/metabolismo , Fermentação , Meglutol/metabolismo , Isoflavonas/metabolismo , Aminoácidos/metabolismo , Metabolômica
7.
Metabolites ; 13(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837775

RESUMO

The potential application of Xylocarpus granatum, a mangrove species, as traditional medicine has been widely linked to its high secondary metabolite and antioxidant contents. However, few studies have been reported to identify and classify active metabolites responsible for such excellent biological activities. Therefore, the aim of this work was to determine the antioxidant activity, identify the metabolite profiles, and predict the metabolites acting as antioxidants in X. granatum extract using a gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach. The seeds, stems, fruit peel, pulp, leaves, and twigs of X. granatum were macerated with ethanol. Each extract was analyzed with GC-MS, and the data were processed using mass spectrometry data-independent analysis (MS-DIAL) software to identify the metabolites. The IC50 value of plant parts of X. granatum ranged from 7.73 to 295 ppm. A total of 153 metabolites were identified and confirmed in the X. granatum extracts. Among the identified metabolites, epicatechin and epigallocatechin were the two most abundant in the stem extracts and are expected to have the greatest potential as antioxidants. Principal component analysis (PCA) succeeded in grouping all parts of the plant into three groups based on the composition of the metabolites: group 1 (stems, fruit peel, and twigs), group 2 (seeds and pulp), and group 3 (leaves).

8.
Metabolites ; 13(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837919

RESUMO

Tempe is fermented soybean from Java, Indonesia, that can serve as a functional food due to its high nutritional content and positive impact on health. Although the tempe fermentation process is known to affect its nutrient content, changes in the metabolite profile during tempe production have not been comprehensively examined. Thus, this research applied a metabolomics approach to investigate the metabolite profile in each step of tempe production, from soybean soaking to over-fermentation. Fourteen samples of raw soybeans, i.e., soaked soybeans (24 h), steamed soybeans, fungal fermented soybeans, and over-fermented soybeans (up to 72 h), were collected. Untargeted metabolomics by gas chromatography/mass spectrometry (GC-MS) was used to determine soybean transformations from various fermentation times and identify disparity-related metabolites. The results showed that soybeans samples clustered together on the basis of the different fermentation steps. The results also showed that sugar, sugar alcohol, organic acids, and amino acids, as well as fermentation time, contributed to the soybean metabolite profile transformations. During the fermentation of tempe, sugars and sugar alcohols accumulated at the beginning of the process before gradually decreasing as fermentation progressed. Specifically, at the beginning of the fermentation, gentiobiose, galactinol, and glucarate were accumulated, and several metabolites such as glutamine, 4-hydroxyphenylacetic acid, and homocysteine increased along with the progression of fermentation. In addition, notable isoflavones daidzein and genistein increased from 24 h of fermentation until 72 h. This is the first report that provides a complete description of the metabolic profile of the tempe production from soybean soaking to over-fermentation. Through this study, the dynamic changes at each step of tempe production were revealed. This information can be beneficial to the tempe industry for the improvement of product quality based on metabolite profiling.

9.
Biotechnol Prog ; 39(1): e3293, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36081345

RESUMO

Poly-γ-glutamic acid (γ-PGA) is a biopolymer with a wide range of applications, mainly produced using Bacillus strains. The formation and concomitant secretion of γ-PGA increases the culture broth viscosity, while enzymatic depolymerisation and degradation of γ-PGA decreases the culture broth viscosity. In this study, the recently published ViMOS (Viscosity Monitoring Online System) is applied for optical online measurements of broth viscosity in eight parallel shake flasks. It is shown that the ViMOS is suitable to monitor γ-PGA production and degradation online in shake flasks. This online monitoring enables the detailed analysis of the Ppst promoter and γ-PGA depolymerase knockout mutants in genetically modified Bacillus subtilis 168. The Ppst promoter becomes active under phosphate starvation. The different single depolymerase knockout mutants are ∆ggt, ∆pgdS, ∆cwlO and a triple knockout mutant. An increase in γ-PGA yield in gγ-PGA /gglucose of 190% could be achieved with the triple knockout mutant compared to the Ppst reference strain. The single cwlO knockout also increased γ-PGA production, while the other single knockouts of ggt and pgdS showed no impact. Partial depolymerisation of γ-PGA occurred despite the triple knockout. The online measured data are confirmed with offline measurements. The online viscosity system directly reflects γ-PGA synthesis, γ-PGA depolymerisation, and changes in the molecular weight. Thus, the ViMOS has great potential to rapidly gain detailed and reliable information about new strains and cultivation conditions. The broadened knowledge will facilitate the further optimization of γ-PGA production.


Assuntos
Bacillus subtilis , Ácido Glutâmico , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Fosfatos/metabolismo , Viscosidade , Ácido Poliglutâmico/metabolismo
10.
Metabolites ; 12(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36422288

RESUMO

Quorum sensing (QS) is generally used to describe the process involving the release and recognition of signaling molecules, such as N-acyl-homoserine lactones, by bacteria to coordinate their response to population density and biofilm development. However, detailed information on the heterogeneity of QS metabolites in biofilms remains largely unknown. Here, we describe the utilization of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to follow the production of specific metabolites, including QS metabolites, during Pseudomonas putida biofilm development. To do so, a method to grow an agar-based biofilm was first established, and MALDI-MSI was used to detect and visualize the distribution of QS metabolites in biofilms at different cultivation times. This study demonstrated that N-acyl-homoserine lactones are homogeneously produced in the early stages of P. putida biofilm formation. In contrast, the spatial distribution of quinolones and pyochelin correlated with the swarming motility of P. putida in mature biofilms. These two metabolites are involved in the production of extracellular polymeric substances and iron chelators. Our study thus contributes to establishing the specific temporal regulation and spatial distribution of N-acyl-homoserine lactone-related metabolites and quinolone and pyochelin in P. putida biofilms.

11.
Front Mol Biosci ; 9: 1057709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438656

RESUMO

In recent years, mass spectrometry-based metabolomics has been established as a powerful and versatile technique for studying cellular metabolism by comprehensive analysis of metabolites in the cell. Although there are many scientific reports on the use of metabolomics for the elucidation of mechanism and physiological changes occurring in the cell, there are surprisingly very few reports on its use for the identification of rate-limiting steps in a synthetic biological system that can lead to the actual improvement of the host organism. In this mini review, we discuss different strategies for improving strain performance using metabolomics data and compare the application of metabolomics-driven strain improvement techniques in different host microorganisms. Finally, we highlight several success stories on the use of metabolomics-driven strain improvement strategies, which led to significant bioproductivity improvements.

12.
J Biosci Bioeng ; 134(2): 125-132, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35654674

RESUMO

Chocolate flavors vary depending on the origin of the cocoa beans used. Differences in soil, microorganisms, and environmental factors contribute to the formation of flavor precursors in cocoa beans. During cocoa bean fermentation, environmental temperature has been shown to alter metabolite concentrations. However, the correlation between the metabolite profile of cocoa beans and the temperature of their region of origin has not been fully defined. In this study, the metabolite profiles of Indonesian cocoa beans of various origins were evaluated using gas chromatography/mass spectrometry-based analysis, and were found to differ depending on the origin of the bean. Subsequently, the correlation between metabolite profile and environmental temperature of the origin was assessed using orthogonal projection to latent structure regression (OPLS-R) analysis. The analysis revealed that seven metabolites were associated with temperature: γ-aminobutyric acid (GABA), ethanolamine, glycerol, isocitric acid + citric acid, succinic acid, malic acid, and saccharic acid. The findings of this study will be valuable to chocolate industries for the production of single-origin chocolates.


Assuntos
Cacau , Chocolate , Cacau/química , Cacau/metabolismo , Chocolate/análise , Fermentação , Indonésia , Temperatura
13.
J Biosci Bioeng ; 134(2): 138-143, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35753972

RESUMO

Chocolate is one of the most popular sweets in the world. In recent years, the bean-to-bar process for chocolate production has attracted global attention. Bean-to-bar is a method of managing the whole production process from cocoa beans to chocolate bars, including single-origin chocolate (SOC). Many manufacturers aim to produce high-quality chocolate to maximize the flavor of cocoa beans. However, chocolate compounds are very complex due to many processes, and there are a limited number of studies on the SOC produced from the bean-to-bar process. Therefore, understanding the effects of processing is important for the growth of the chocolate industry. The objective of this study was to investigate the processing effect on the component changes of SOC during the bean-to-bar process. In this study, the component changes during the bean-to-bar process were monitored using gas chromatography/mass spectrometry (GC/MS). Then, the characteristics of SOC from five regions in Indonesia were further investigated. Lastly, the component profiles were combined with the data obtained from sensory evaluation. Our results showed that the influence of the manufacturing process was greater than that of the difference in the cocoa production area. Moreover, 1-pentanol, raffinose, and heptanoic acid were correlated with sweetness and dairy flavor, whereas glutamic acid, tartaric acid, 3-methyl-2-butanone, mannitol, and ethyl cinnamate were correlated with bitterness, astringency, and cocoa flavor, which were shown to be affected by fermentation, roasting, and sugar addition. This information might provide a basis for improving the chocolate production process and its quality related to the component profiles.


Assuntos
Cacau , Chocolate , Cacau/química , Chocolate/análise , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Paladar
14.
Metabolomics ; 18(7): 44, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760928

RESUMO

INTRODUCTION: Terasi is a fermented shrimp paste unique to Indonesia and is used in dishes to add umami and saltiness. In a previous study, the controlled fermentation of terasi was optimized using starters containing three bacterial isolates: Staphylococcus saprophyticus, Bacillus subtilis, and Lactobacillus murinus. However, the influence of controlled fermentation using these starters on the metabolites in terasi has not yet been studied. OBJECTIVES: Therefore, this study aimed to investigate the effect of controlled fermentation on taste-related metabolites in terasi using a metabolomics approach. RESULTS: Non-targeted analysis indicated that amino acids contributed to variations during fermentation. Subsequently, targeted analysis of amino acids revealed that terasi subjected to controlled fermentation using a starter with a 2:1:2 ratio of S. saprophyticus, B. subtilis, and L. murinus, respectively, resulted in a product containing D-amino acids, such as D-Asp, D-Gln, and D-Leu that was unique when compared to other terasi products prepared using controlled fermentation. Genetic analysis of isolates from the terasi produced using controlled fermentation was also carried out, and this is the first study to suggest that Staphylococcus spp. has the potential to produce D-amino acids. CONCLUSION: In conclusion, the ratio of bacterial species in starter cultures used in controlled fermentation influenced the amino acid profile of the product and starters with a higher ratio of Staphylococcus spp. may result in the production of D-amino acids.


Assuntos
Metabolômica , Paladar , Aminoácidos , Fermentação , Metaboloma
15.
Front Microbiol ; 13: 871624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495658

RESUMO

The concerted effort for bioproduction of higher alcohols and other commodity chemicals has yielded a consortium of metabolic engineering techniques to identify targets to enhance performance of engineered microbial strains. Here, we demonstrate the use of metabolomics as a tool to systematically identify targets for improved production phenotypes in Escherichia coli. Gas chromatography/mass spectrometry (GC/MS) and ion-pair LC-MS/MS were performed to investigate metabolic perturbations in various 1-propanol producing strains. Two initial strains were compared that differ in the expression of the citramalate and threonine pathways, which hold a synergistic relationship to maximize production yields. While this results in increased productivity, no change in titer was observed when the threonine pathway was overexpressed beyond native levels. Metabolomics revealed accumulation of upstream byproducts, norvaline and 2-aminobutyrate, both of which are derived from 2-ketobutyrate (2KB). Eliminating the competing pathway by gene knockouts or improving flux through overexpression of glycolysis gene effectively increased the intracellular 2KB pool. However, the increase in 2KB intracellular concentration yielded decreased production titers, indicating toxicity caused by 2KB and an insufficient turnover rate of 2KB to 1-propanol. Optimization of alcohol dehydrogenase YqhD activity using an ribosome binding site (RBS) library improved 1-propanol titer (g/L) and yield (g/g of glucose) by 38 and 29% in 72 h compared to the base strain, respectively. This study demonstrates the use of metabolomics as a powerful tool to aid systematic strain improvement for metabolically engineered organisms.

16.
J Biosci Bioeng ; 133(5): 459-466, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35256269

RESUMO

Currently, count size is applied globally as a grading standard to sell head-less shell-on farmed shrimp. Although count size does not indicate directly the quality of shrimp, the price of shrimp generally increases proportionally with the increase of shrimp size. The importance of the size of white leg shrimp has been previously reported, where a strong correlation was found between size and metabolome data. In this study, we aimed to improve the predictive power of the orthogonal projection to latent structure (OPLS) model by expanding the metabolite coverage using liquid chromatography mass-spectrometry (LC/MS) and gas chromatography-mass spectrometry (GC/MS) analysis. The training set consisted of 11 different-sized white leg shrimps from Indonesia and was validated in a step-wise manner by introducing an independent dataset consisting of commercial shrimp from the Japanese market. The first validation set consisted of commercial white leg shrimp, resulting in standard deviation error estimation and prediction values of 1.648 and 2.617, respectively. IMP and AMP, which are metabolites responsible for the umami taste in crustaceans, showed the highest variable importance in projection (VIP) scores and positively correlated with the increase in shrimp size. The second validation was carried out to evaluate the applicability of the size-metabolome relationship to other commercial penaeid shrimp species. The commercial black tiger shrimps with count sizes of 31/40, 21/25, 16/20, and 13/15 failed to predict the size of shrimp, suggesting that the importance of size in relation to the metabolome profile was rather species-specific.


Assuntos
Penaeidae , Animais , Cromatografia Gasosa-Espectrometria de Massas , Metaboloma , Metabolômica/métodos , Penaeidae/metabolismo , Alimentos Marinhos
17.
J Biosci Bioeng ; 133(5): 425-435, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35184928

RESUMO

Metabolomics is a tool used for quantitative assessment of metabolites that has been applied extensively in the field of food science. Recently, metabolomics-based gas chromatography-mass spectrometry (GC/MS) is becoming a common tool for analyzing, not only volatile compounds, but also non-volatile compounds due to the development of various derivatization methods. Although several studies have reviewed the application of metabolomics in food science, this present review article specifically focuses on metabolomics research using GC/MS for analysis of non-volatile compounds such as sugars, amino acids, and organic acids. From exhaustive literature research, the application of GC/MS-based metabolomics for non-volatile compounds in food science includes discriminating food samples based on cultivars and authentication of food samples to prevent food fraud, characterizing the profile of food samples to provide a general overview of the sample, evaluating stress-response, optimizing postharvest processes based on metabolic changes, monitoring changes during growth and food processing, evaluating and predicting food quality, and evaluating food shelf-life. GC/MS-based analysis of non-volatile compounds has been proven to be extremely valuable in food science, and might open new avenues for future researchers and engineers to develop instruments or improving production process in food industry.


Assuntos
Tecnologia de Alimentos , Metabolômica , Manipulação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Tecnologia
18.
Metabolites ; 12(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35208193

RESUMO

Low-salt shrimp paste, or terasi, is an Indonesian fermented food made from planktonic shrimp mixed with a low concentration of salt. Since high daily intake of sodium is deemed unhealthy, reduction of salt content in shrimp paste production is desired. Until now, there is no reported investigation on the bacterial population and metabolite composition of terasi during fermentation. In this study, the bacterial community of terasi was assessed using high-throughput sequencing of the 16S rRNA V3-V4 region. From this analysis, Tetragenococcus, Aloicoccus, Alkalibacillus, Atopostipes, and Alkalibacterium were found to be the dominant bacterial genus in low-salt shrimp paste. GC/MS-based metabolite profiling was also conducted to monitor the metabolite changes during shrimp paste fermentation. Results showed that acetylated amino acids increased, while glutamine levels decreased, during the fermentation of low-salt shrimp paste. At the start of shrimp paste fermentation, Tetragenococcus predominated with histamine and cadaverine accumulation. At the end of fermentation, there was an increase in 4-hydroxyphenyl acetic acid and indole-3-acetic acid levels, as well as the predominance of Atopostipes. Moreover, we found that aspartic acid increased during fermentation. Based on our findings, we recommend that fermentation of low-salt shrimp paste be done for 7 to 21 days, in order to produce shrimp paste that has high nutritional content and reduced health risk.

19.
Metabolites ; 12(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35050152

RESUMO

Tempe is a fermented soybean food that is globally renowned for its high protein content. Methods of preparing tempe vary worldwide, and include soaking in vinegar before fermentation. This study aimed to determine the effects of soaking in vinegar by metabolome analysis, gas chromatography/mass spectrometry, and sensory attribute evaluation. Vinegar affected metabolism during tempe fermentation, which led to altered metabolite profiles in the final product. We validated the metabolite profiles of two types of tempe using triangle tests and rate-all-that-apply (RATA) tests, which revealed that the sensory attributes of a golden-brown color, ammonia smell, pleasant smell, salty flavor, and acceptance significantly differed (p < 0.05) between the two types of tempe. A high concentration of specific amino acids in the control tempe explained a strong ammonia smell, saltiness, and darker golden-brown sensory attributes. Tempe soaked in vinegar contained high concentrations of metabolites associated with a roasted aroma and cooked meat. In conclusion, most RATA panelists who were being introduced to tempe preferred that soaked in vinegar to the control that was not.

20.
J Biosci Bioeng ; 132(6): 613-620, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34656425

RESUMO

Indonesia is one of the world's leading mango producers and grows many cultivars. However, only a few cultivars have been commercialized, perhaps because of limited information on consumer preferences that meet the market demands. Here, non-targeted gas chromatography-mass spectrometry (GC-MS)-based metabolome analysis was used to characterize five Indonesian mango cultivars considering their taste characteristics. A total of 95 components (47 annotated and 48 unknown metabolites) were identified. Cultivars with a higher general impression score (Arumanis 143 and Gedong) in principal component analysis (PCA) accumulated more sugars and sweetening components, such as glycine and lyxose. Meanwhile, cultivars with a lower general impression score in PCA (Lalijiwo and Cengkir Indramayu) accumulated more aspartic acid, isocitric acid, and citric acid, which increase sourness; methionine, which is a precursor of sulfur-containing volatile aroma components; and phenylalanine, which contributes to bitterness. Furthermore, orthogonal projection to latent structures discriminant analysis revealed that nicotinic acid, glutamic acid, aspartic acid, glycine, and ribose characterized higher or lower general impression cultivars. In addition, metabolic profiling of eight mango cultivars, including five Indonesian and three overseas cultivars, suggested that taste was more influential than differences in cultivars, production areas, and cultivation conditions by its hydrophilic primary metabolomics. These findings will serve as fundamental data for future mango industry development considering the association between the unique taste of each cultivar and its metabolites as well as the consumer preferences for Indonesian mango.


Assuntos
Mangifera , Cromatografia Gasosa-Espectrometria de Massas , Indonésia , Metabolômica , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...