Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(10): 729, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36064988

RESUMO

Since the middle of the 1500 s, mining has been active in central Mexico. Total estimates for low-grade piles and mine tailing materials in the Guanajuato mining district (GMD) are in the range of 150 million tons, covering an area of 15 to 20 km2. GMD is located in the Guanajuato River sub-basin (GRB), which is part of one of the largest basins in Mexico (Lerma-Santiago). Previous studies on the GRB found unusually high concentrations of heavy metals in mining tailings and sediments. Geochemical and statistical methods were used here to determine the sediment's origin, background values, degree of contamination, and toxicity through different contamination indices. This analysis shows that Cu, Co, As, Sb, and Hg are higher than they are in the upper continental crust (UCC) overbank sediments without human and mining influence, because of the ore deposits and rock weathering in GRB. Geochemistry results in stream sediments show anomalies, where Hg, Cu, Zn, As, and Pb are higher than UCC because those heavy metals and trace elements (HMT) have been influenced by human activities and mineral recovery (smelting, amalgamation, cyanidation). The distribution of high concentrations of HMTs and contamination indices occur in the main channel of the Guanajuato River and downstream of the city of Guanajuato. Statistical analyses (cluster and principal component analysis) reveal relationships between Cr, Ni, Cu, and Pb, which are primarily of natural origin, related to rocks of the upper basin. The middle and lower basins are distinctive in their associations between As, Sb, Zn, Pb, and Hg. Additionally, it is recognized that the origins of Pb, Zn, and Hg are geogenic and anthropogenic. This study demonstrates how crucial it is to understand the geochemistry of various HMT sources, with both natural and anthropogenic contributions (stream sediments and rocks), in order to calculate a more realistic background in a basin with both natural anomalies and anthropogenic contamination. The basin is a regional aquifer recharge area, so the new geochemical data are important for improving basin environmental management.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Humanos , Chumbo/análise , Mercúrio/análise , Metais Pesados/análise , México , Poluentes Químicos da Água/análise
2.
Environ Monit Assess ; 194(2): 128, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080661

RESUMO

In the present study, the hydrochemical dynamic and the water quality of La Purísima reservoir, Central Mexico, have been determined. The reservoir presents total dissolved solids (TDSs) between 146 and 328 mg L-1 and water quality neutral to slightly alkaline (pH 7.0 to 8.7) during the dry season, whereas it becomes clearly alkaline (pH 8.1-9.9) in the rainy-warm season. Through its main tributaries, La Purísima reservoir has been receiving water affected by anthropic activities, such as mining, urbanization, and agriculture. La Purísima reservoir indicates water quality suitable for irrigation and aquatic lives, but unsuitable for drinking purposes. A geochemical evolution from the riverine to the lacustrine zone is evidenced by the complexation of several free ions: the higher saturation indexes; the lower toxic metal concentrations; and the lower trophic status, which ameliorate the water quality in the lacustrine zone. Trace elements co-precipitate and are adsorbed onto bottom sediments. During summer, high evaporation rates and atmospheric precipitation are found to decline the water quality. Cluster analyses reflect the geo-setting and different pollution levels: urban impact from the north coast, and agricultural activities from the east coast. The sensitivity of the lake to geochemical behavior can be used to understand the complex dissolved geochemical dynamics in a lake and the potential effects from long-term anthropic impact variability. The information about water quality of La Purísima reservoir may be useful to preserve the ecosystem and its biodiversity.


Assuntos
Lagos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , México , Poluentes Químicos da Água/análise , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...