Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 345: 126459, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34863843

RESUMO

Phycocyanin (PC) is a soluble blue pigment-protein primarily harvested from the cyanobacterium Arthrospira platensis. PC is in high demand from several industries, but its narrow stability range limits potential applications. Here, a pilot scale (120 L total) batch production, extraction and purification process for thermostable PC (Te-PC) from a Synechocystis sp. PCC 6803 'Olive' strain expressing the PC operon cpcBACD from Thermosynechococcus elongatus BP-1 on a self-replicating vector is presented. Batch cultivation without antibiotics had no impact on growth or Te-PC production and optimisation of growth conditions resulted in Te-PC contents of 75.3 ± 1.7 mg g DW-1. Wet biomass was harvested following chitosan-based flocculation with a 97 ± 2% efficiency, and Te-PC was extracted by high pressure homogenisation. Subsequent purification by heat-treatment and two-step ammonium sulfate precipitation removed chlorophyll and allophycocyanin contamination, resulting in Te-PC purities of 2.9 ± 0.7 and a mean Te-PC recovery of 84 ± 12%.


Assuntos
Ficocianina , Synechocystis , Biomassa , Clorofila , Floculação
2.
Metab Eng Commun ; 13: e00175, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34168957

RESUMO

Phycocyanin (PC) is a soluble phycobiliprotein found within the light-harvesting phycobilisome complex of cyanobacteria and red algae, and is considered a high-value product due to its brilliant blue colour and fluorescent properties. However, commercially available PC has a relatively low temperature stability. Thermophilic species produce more thermostable variants of PC, but are challenging and energetically expensive to cultivate. Here, we show that the PC operon from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 (cpcBACD) is functional in the mesophile Synechocystis sp. PCC 6803. Expression of cpcBACD in an 'Olive' mutant strain of Synechocystis lacking endogenous PC resulted in high yields of thermostable PC (112 ± 1 mg g-1 DW) comparable to that of endogenous PC in wild-type cells. Heterologous PC also improved the growth of the Olive mutant, which was further supported by evidence of a functional interaction with the endogenous allophycocyanin core of the phycobilisome complex. The thermostability properties of the heterologous PC were comparable to those of PC from T. elongatus, and could be purified from the Olive mutant using a low-cost heat treatment method. Finally, we developed a scalable model to calculate the energetic benefits of producing PC from T. elongatus in Synechocystis cultures. Our model showed that the higher yields and lower cultivation temperatures of Synechocystis resulted in a 3.5-fold increase in energy efficiency compared to T. elongatus, indicating that producing thermostable PC in non-native hosts is a cost-effective strategy for scaling to commercial production.

3.
J Exp Bot ; 71(13): 3827-3842, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32188986

RESUMO

The light-harvesting phycobilisome complex is an important component of photosynthesis in cyanobacteria and red algae. Phycobilisomes are composed of phycobiliproteins, including the blue phycobiliprotein phycocyanin, that are considered high-value products with applications in several industries. Remarkably, several cyanobacteria and red algal species retain the capacity to harvest light and photosynthesise under highly selective environments such as hot springs, and flourish in extremes of pH and elevated temperatures. These thermophilic organisms produce thermostable phycobiliproteins, which have superior qualities much needed for wider adoption of these natural pigment-proteins in the food, textile, and other industries. Here we review the available literature on the thermostability of phycobilisome components from thermophilic species and discuss how a better appreciation of phycobiliproteins from extreme environments will benefit our fundamental understanding of photosynthetic adaptation and could provide a sustainable resource for several industrial processes.


Assuntos
Cianobactérias , Ficobiliproteínas , Ambientes Extremos , Ficobilissomas , Ficocianina
4.
J Vis Exp ; (152)2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31736499

RESUMO

Cyanobacteria are a diverse group of prokaryotic photosynthetic organisms that can be genetically modified for the renewable production of useful industrial commodities. Recent advances in synthetic biology have led to development of several cloning toolkits such as CyanoGate, a standardized modular cloning system for building plasmid vectors for subsequent transformation or conjugal transfer into cyanobacteria. Here we outline a detailed method for assembling a self-replicating vector (e.g., carrying a fluorescent marker expression cassette) and conjugal transfer of the vector into the cyanobacterial strains Synechocystis sp. PCC 6803 or Synechococcus elongatus UTEX 2973. In addition, we outline how to characterize the performance of a genetic part (e.g., a promoter) using a plate reader or flow cytometry.


Assuntos
Clonagem Molecular/métodos , Conjugação Genética , Synechococcus/genética , Synechocystis/genética , Escherichia coli/genética , Fluorescência , Vetores Genéticos/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas
5.
Plant Physiol ; 180(1): 39-55, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30819783

RESUMO

Recent advances in synthetic biology research have been underpinned by an exponential increase in available genomic information and a proliferation of advanced DNA assembly tools. The adoption of plasmid vector assembly standards and parts libraries has greatly enhanced the reproducibility of research and the exchange of parts between different labs and biological systems. However, a standardized modular cloning (MoClo) system is not yet available for cyanobacteria, which lag behind other prokaryotes in synthetic biology despite their huge potential regarding biotechnological applications. By building on the assembly library and syntax of the Plant Golden Gate MoClo kit, we have developed a versatile system called CyanoGate that unites cyanobacteria with plant and algal systems. Here, we describe the generation of a suite of parts and acceptor vectors for making (1) marked/unmarked knock-outs or integrations using an integrative acceptor vector, and (2) transient multigene expression and repression systems using known and previously undescribed replicative vectors. We tested and compared the CyanoGate system in the established model cyanobacterium Synechocystis sp. PCC 6803 and the more recently described fast-growing strain Synechococcus elongatus UTEX 2973. The UTEX 2973 fast-growth phenotype was only evident under specific growth conditions; however, UTEX 2973 accumulated high levels of proteins with strong native or synthetic promoters. The system is publicly available and can be readily expanded to accommodate other standardized MoClo parts to accelerate the development of reliable synthetic biology tools for the cyanobacterial community.


Assuntos
Cianobactérias/genética , Engenharia Genética/métodos , Biologia Sintética/métodos , Clonagem Molecular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Vetores Genéticos , Regiões Promotoras Genéticas , Synechocystis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...