Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 10: 1129990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180789

RESUMO

Background: Calcific aortic stenosis (AS) is the most prevalent heart valve disease in developed countries. The aortic valve cusps progressively thicken and the valve does not open fully due to the presence of calcifications. In vivo imaging, usually used for diagnosis, does not allow the visualization of the microstructural changes associated with AS. Methods: Ex vivo high-resolution microfocus computed tomography (microCT) was used to quantitatively describe the microstructure of calcified aortic valve cusps in full 3D. As case study in our work, this quantitative analysis was applied to normal-flow low-gradient severe AS (NF-LG-SAS), for which the medical prognostic is still highly debated in the current literature, and high-gradient severe AS (HG-SAS). Results: The volume proportion of calcification, the size and number of calcified particles and their density composition was quantified. A new size-based classification considering small-sized particles that are not detected with in vivo imaging was defined for macro-, meso- and microscale calcifications. Volume and thickness of aortic valve cusps, including the complete thickness distribution, were also determined. Moreover, changes in the cusp soft tissues were also visualized with microCT and confirmed by scanning electron microscopy images of the same sample. NF-LG-SAS cusps contained lower relative amount of calcifications than HG-SAS. Moreover, the number and size of calcified objects and the volume and thickness of the cusps were also lower in NF-LG-SAS cusps than in HG-SAS. Conclusions: The application of high-resolution ex vivo microCT to stenotic aortic valve cusps provided a quantitative description of the general structure of the cusps and of the calcifications present in the cusp soft tissues. This detailed description could help in the future to better understand the mechanisms of AS.

2.
Materials (Basel) ; 16(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241397

RESUMO

7xxx aluminium series reach exceptional strength compared to other industrial aluminium alloys. However, 7xxx aluminium series usually exhibit Precipitate-Free Zones (PFZs) along grain boundaries, which favour intergranular fracture and low ductility. In this study, the competition between intergranular and transgranular fracture is experimentally investigated in the 7075 Al alloy. This is of critical importance since it directly affects the formability and crashworthiness of thin Al sheets. Using Friction Stir Processing (FSP), microstructures with similar hardening precipitates and PFZs, but with very different grain structures and intermetallic (IM) particle size distribution, were generated and studied. Experimental results showed that the effect of microstructure on the failure mode was significantly different for tensile ductility compared to bending formability. While the tensile ductility was significantly improved for the microstructure with equiaxed grains and smaller IM particles (compared to elongated grains and larger particles), the opposite trend was observed in terms of formability.

3.
Acta Biomater ; 164: 303-316, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37072066

RESUMO

To improve the current treatment for vascular diseases, such as vascular grafts, intravascular stents, and balloon angioplasty intervention, the evaluation of the native blood vessel microstructure in full 3D could be beneficial. For this purpose, we used contrast-enhanced X-ray microfocus computed tomography (CECT): a combination of X-ray microfocus computed tomography (microCT) and contrast-enhancing staining agents (CESAs) containing high atomic number elements. In this work, we performed a comparative study based on staining time and contrast-enhancement of 2 CESAs: Monolacunary and 1:2 Hafnium-substituted Wells-Dawson polyoxometalate (Mono-WD POM and Hf-WD POM, respectively) for imaging of the porcine aorta. After showing the advantages of Hf-WD POM in terms of contrast enhancement, we expanded our imaging to other species (rat, porcine, and human) and other types of blood vessels (porcine aorta, femoral artery, and vena cava), clearly indicating microstructural differences between different types of blood vessels and different species. We then showed the possibility to extract useful 3D quantitative information from the rat and porcine aortic wall, potentially to be used for computational modeling or for future design optimization of graft materials. Finally, a structural comparison with existing synthetic vascular grafts was made. This information will allow to better understand the in vivo functioning of native blood vessels and to improve the current disease treatments. STATEMENT OF SIGNIFICANCE: Synthetic vascular grafts, used as treatment for some cardiovascular diseases, still often fail clinically, potentially because of a mismatch in mechanical behaviour between the native blood vessel and the graft. To better understand the causes of this mismatch, we studied the full 3D microstructure of blood vessels. For this, we identified Hafnium-substituted Wells-Dawson polyoxometalate as contrast-enhancing staining agent to perform contrast-enhanced X-ray microfocus computed tomography. This technique allowed to show important differences in the microstructure of different types of blood vessels and in different species, as well as with that of synthetic grafts. This information can lead to a better understanding of the functioning of blood vessels and will allow to improve current disease treatments, such as vascular grafts.


Assuntos
Prótese Vascular , Háfnio , Humanos , Ratos , Animais , Suínos , Microtomografia por Raio-X , Stents
4.
Sci Rep ; 13(1): 2191, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750646

RESUMO

Cochlear implant restores hearing loss through electrical stimulation of the hearing nerve from within the cochlea. Unfortunately, surgical implantation of this neuroprosthesis often traumatizes delicate intracochlear structures, resulting in loss of residual hearing and compromising hearing in noisy environments and appreciation of music. To avoid cochlear trauma, insertion techniques and devices have to be adjusted to the cochlear microanatomy. However, existing techniques were unable to achieve a representative visualization of the human cochlea: classical histology damages the tissues and lacks 3D perspective; standard microCT fails to resolve the cochlear soft tissues; and previously used X-ray contrast-enhancing staining agents are destructive. In this study, we overcame these limitations by performing contrast-enhanced microCT imaging (CECT) with a novel polyoxometalate staining agent Hf-WD POM. With Hf-WD POM-based CECT, we achieved nondestructive, high-resolution, simultaneous, 3D visualization of the mineralized and soft microstructures in fresh-frozen human cochleae. This enabled quantitative analysis of the true intracochlear dimensions and led to anatomical discoveries, concerning surgically-relevant microstructures: the round window membrane, the Rosenthal's canal and the secondary spiral lamina. Furthermore, we demonstrated that Hf-WD POM-based CECT enables quantitative assessment of these structures as well as their trauma.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Microtomografia por Raio-X , Cóclea/patologia , Implante Coclear/métodos , Audição , Eletrodos Implantados
5.
Front Endocrinol (Lausanne) ; 13: 921073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465661

RESUMO

The common cellular origin between bone marrow adipocytes (BMAds) and osteoblasts contributes to the intimate link between bone marrow adipose tissue (BMAT) and skeletal health. An imbalance between the differentiation ability of BMSCs towards one of the two lineages occurs in conditions like aging or osteoporosis, where bone mass is decreased. Recently, we showed that the sodium-phosphate co-transporter PiT2/SLC20A2 is an important determinant for bone mineralization, strength and quality. Since bone mass is reduced in homozygous mutant mice, we investigated in this study whether the BMAT was also affected in PiT2-/- mice by assessing the effect of the absence of PiT2 on BMAT volume between 3 and 16 weeks, as well as in an ovariectomy-induced bone loss model. Here we show that the absence of PiT2 in juveniles leads to an increase in the BMAT that does not originate from an increased adipogenic differentiation of bone marrow stromal cells. We show that although PiT2-/- mice have higher BMAT volume than control PiT2+/+ mice at 3 weeks of age, BMAT volume do not increase from 3 to 16 weeks of age, leading to a lower BMAT volume in 16-week-old PiT2-/- compared to PiT2+/+ mice. In contrast, the absence of PiT2 does not prevent the increase in BMAT volume in a model of ovariectomy-induced bone loss. Our data identify SLC20a2/PiT2 as a novel gene essential for the maintenance of the BMAd pool in adult mice, involving mechanisms of action that remain to be elucidated, but which appear to be independent of the balance between osteoblastic and adipogenic differentiation of BMSCs.


Assuntos
Doenças Ósseas Metabólicas , Osteoporose , Feminino , Camundongos , Animais , Medula Óssea , Tecido Adiposo , Osteoporose/genética , Densidade Óssea
6.
Nat Commun ; 13(1): 6207, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266273

RESUMO

Biological tissues comprise a spatially complex structure, composition and organization at the microscale, named the microstructure. Given the close structure-function relationships in tissues, structural characterization is essential to fully understand the functioning of healthy and pathological tissues, as well as the impact of possible treatments. Here, we present a nondestructive imaging approach to perform quantitative 3D histo(patho)logy of biological tissues, termed Cryogenic Contrast-Enhanced MicroCT (cryo-CECT). By combining sample staining, using an X-ray contrast-enhancing staining agent, with freezing the sample at the optimal freezing rate, cryo-CECT enables 3D visualization and structural analysis of individual tissue constituents, such as muscle and collagen fibers. We applied cryo-CECT on murine hearts subjected to pressure overload following transverse aortic constriction surgery. Cryo-CECT allowed to analyze, in an unprecedented manner, the orientation and diameter of the individual muscle fibers in the entire heart, as well as the 3D localization of fibrotic regions within the myocardial layers. We foresee further applications of cryo-CECT in the optimization of tissue/food preservation and donor banking, showing that cryo-CECT also has clinical and industrial potential.


Assuntos
Sistema Musculoesquelético , Camundongos , Animais , Microtomografia por Raio-X/métodos , Congelamento , Coloração e Rotulagem , Colágeno , Imageamento Tridimensional/métodos
7.
Materials (Basel) ; 11(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469398

RESUMO

Understanding the fatigue damage mechanisms in composite materials is of great importance in the wind turbine industry because of the very large number of loading cycles rotor blades undergo during their service life. In this paper, the fatigue damage mechanisms of a non-crimp unidirectional (UD) glass fibre reinforced polymer (GFRP) used in wind turbine blades are characterised by time-lapse ex-situ helical X-ray computed tomography (CT) at different stages through its fatigue life. Our observations validate the hypothesis that off-axis cracking in secondary oriented fibre bundles, the so-called backing bundles, are directly related to fibre fractures in the UD bundles. Using helical X-ray CT we are able to follow the fatigue damage evolution in the composite over a length of 20 mm in the UD fibre direction using a voxel size of (2.75 µm)³. A staining approach was used to enhance the detectability of the narrow off-axis matrix and interface cracks, partly closed fibre fractures and thin longitudinal splits. Instead of being evenly distributed, fibre fractures in the UD bundles nucleate and propagate locally where backing bundles cross-over, or where stitching threads cross-over. In addition, UD fibre fractures can also be initiated by the presence of extensive debonding and longitudinal splitting, which were found to develop from debonding of the stitching threads near surface. The splits lower the lateral constraint of the originally closely packed UD fibres, which could potentially make the composite susceptible to compressive loads as well as the environment in service. The results here indicate that further research into the better design of the positioning of stitching threads, and backing fibre cross-over regions is required, as well as new approaches to control the positions of UD fibres.

8.
J Funct Biomater ; 9(3)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149507

RESUMO

Biomaterial for tissue engineering is a topic of huge progress with a recent surge in fabrication and characterization advances. Biomaterials for tissue engineering applications or as scaffolds depend on various parameters such as fabrication technology, porosity, pore size, mechanical strength, and surface available for cell attachment. To serve the function of the scaffold, the porous biomaterial should have enough mechanical strength to aid in tissue engineering. With a new manufacturing technology, we have obtained high strength materials by optimizing a few processing parameters such as pressure, temperature, and dwell time, yielding the monolith with porosity in the range of 80%⁻93%. The three-dimensional interconnectivity of the porous media through scales for the newly manufactured biomaterial has been investigated using newly developed 3D correlative and multi-modal imaging techniques. Multiscale X-ray tomography, FIB-SEM Slice & View stacking, and high-resolution STEM-EDS electronic tomography observations have been combined allowing quantification of morphological and geometrical spatial distributions of the multiscale porous network through length scales spanning from tens of microns to less than a nanometer. The spatial distribution of the wall thickness has also been investigated and its possible relationship with pore connectivity and size distribution has been studied.

9.
Biores Open Access ; 3(6): 265-77, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25469312

RESUMO

Functionalization of tissue engineering scaffolds with in vitro-generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca(2+)) and phosphate (PO4 (3-)) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano-computed tomography [nano-CT]). Histological analysis revealed different bone formation patterns, either bone ossicles containing bone marrow surrounding the scaffold struts (in BM2) or bone apposition directly on the struts' surface (in BM1 and BM3). In conclusion, we have presented experimental data on the feasibility to produce devitalized osteoinductive mineralized carriers by functionalizing 3D porous scaffolds with an in vitro cell-made mineralized matrix under the mineralizing culture conditions.

10.
Materials (Basel) ; 6(10): 4737-4757, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-28788357

RESUMO

Additive manufacturing (AM) is a production method that enables the building of porous structures with a controlled geometry. However, there is a limited control over the final surface of the product. Hence, complementary surface engineering strategies are needed. In this work, design of experiments (DoE) was used to customize post AM surface treatment for 3D selective laser melted Ti6Al4V open porous structures for bone tissue engineering. A two-level three-factor full factorial design was employed to assess the individual and interactive effects of the surface treatment duration and the concentration of the chemical etching solution on the final surface roughness and beam thickness of the treated porous structures. It was observed that the concentration of the surface treatment solution was the most important factor influencing roughness reduction. The designed beam thickness decreased the effectiveness of the surface treatment. In this case study, the optimized processing conditions for AM production and the post-AM surface treatment were defined based on the DoE output and were validated experimentally. This allowed the production of customized 3D porous structures with controlled surface roughness and overall morphological properties, which can assist in more controlled evaluation of the effect of surface roughness on various functional properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...