Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Biol Ther ; 16(5): 714-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996841

RESUMO

Increased aerobic glycolysis and de novo lipid biosynthesis are common characteristics of invasive cancers. UDP-glucuronosyltransferases (UGTs) are phase II drug metabolizing enzymes that in normal cells possess the ability to glucuronidate these lipids and speed their excretion; however, de-regulation of these enzymes in cancer cells can lead to an accumulation of bioactive lipids, which further fuels cancer progression. We hypothesize that UGT2B isoform expression is down-regulated in cancer cells and that exogenous re-introduction of these enzymes will reduce lipid content, change the cellular phenotype, and inhibit cancer cell proliferation. In this study, steady-state mRNA levels of UGT isoforms from the 2B family were measured using qPCR in 4 breast cancer and 5 pancreatic cancer cell lines. Expression plasmids for UGT2B isoforms known to glucuronidate cellular lipids, UGT2B4, 2B7, and 2B15 were transfected into MCF-7 and Panc-1 cells, and the cytotoxic effects of these enzymes were analyzed using trypan blue exclusion, annexin V/PI staining, TUNEL assays, and caspase-3 immunohistochemistry. There was a significant decrease in cell proliferation and a significant increase in the number of dead cells after transfection with each of the 3 UGT isoforms in both cell lines. Cellular lipids were also found to be significantly decreased after transfection. The results presented here support our hypothesis and emphasize the important role UGTs can play in cellular proliferation and lipid homeostasis. Evaluating the effect of UGT expression on the lipid levels in cancer cell lines can be relevant to understanding the complex regulation of cancer cells, identifying the roles of UGTs as "lipid-controllers" in cellular homeostasis, and illustrating their suitability as targets for future clinical therapy development.


Assuntos
Neoplasias da Mama/genética , Glucuronosiltransferase/genética , Neoplasias Pancreáticas/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Transfecção
2.
J Appl Toxicol ; 34(11): 1188-99, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25220893

RESUMO

Graphene and single-walled carbon nanotubes were used to deliver the natural low-toxicity drug gambogic acid (GA) to breast and pancreatic cancer cells in vitro, and the effectiveness of this complex in suppressing cellular integrity was assessed. Cytotoxicity was assessed by measuring lactate dehydrogenase release, mitochondria dehydrogenase activity, mitochondrial membrane depolarization, DNA fragmentation, intracellular lipid content, and membrane permeability/caspase activity. The nanomaterials showed no toxicity at the concentrations used, and the antiproliferative effects of GA were significantly enhanced by nanodelivery. The results suggest that these complexes inhibit human breast and pancreatic cancer cells grown in vitro. This analysis represents a first step toward assessing their effectiveness in more complex, targeted, nanodelivery systems.


Assuntos
Portadores de Fármacos/química , Grafite/química , Nanotubos de Carbono/química , Xantonas/farmacologia , Neoplasias da Mama , Linhagem Celular Tumoral , Humanos , L-Lactato Desidrogenase/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...