Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 59(23): 17555-17564, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33232139

RESUMO

A new method for the repetitive batch silylative coupling (trans-silylation) of vinylsilanes with vinyl boronates in the presence of Ru(CO)Cl(H)(PCy3)2 immobilized in poly(ethylene glycols) (PEGs) has been developed. Three PEGs (PEG600, PEG2000, and MPEG2000) with different molecular weights and end groups (MW = 600-2000) were tested as solvents and immobilization media, while an aliphatic solvent (n-hexane or n-heptane) or supercritical CO2 was used for product extraction. By applying 2 mol % of the Ru-H catalyst, it was possible to carry out up to 15 complete runs, with the predominant formation of 1-boryl-1-silylethenes. This immobilization strategy permitted for catalyst reuse and obtaining higher TON values (approximately 660-734) compared to the reaction in conventional solvents (∼50). Detailed kinetic studies of the most effective catalytic system were performed to determine catalyst activity and stability. Moreover, the reactions were carried out in an MPEG2000/scCO2 biphasic system, positively influencing the process sustainability.

2.
Dalton Trans ; 46(15): 4975-4981, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28350017

RESUMO

A new route for the synthesis of functionalized alkenylsilatranes has been developed based on ruthenium-catalyzed trans-silylation with olefins. This transformation allowed for the synthesis of new (E)-alkenylsilatranes in good yields and excellent selectivity. Experimental studies concerning the reaction mechanism were carried out and the intermediate ruthenium-silatranyl complex was isolated and characterized. Moreover, detailed DFT calculations regarding the mechanism of the silylative coupling catalytic cycle of silatranes catalyzed by [Ru]-H complexes were also performed.

3.
Chemistry ; 23(15): 3502-3541, 2017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-28297134

RESUMO

In the syntheses developed to access naturally occurring compounds, especially bioactive substances, boron-functionalized dienes (also "linchpin" reagents) are used as key reagents. Structurally unique dienes are found in nature, and play important biological and chemical roles. Recently, linchpin moieties have been proved as useful substrates for a variety of highly functionalized chemical transformations. The products of these processes are potentially of some use for the syntheses of an important class of natural products showing a wide range of biological activities. This review describes progress in the synthesis of borylsubstituted buta-1,3-dienes as well as their application in organic chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...